Transformation Review

1. Explain what each does to the *original* graph y = f(x).

Assume $c > 0$	Description	Assume $c > 1$	Description
f(x) + c	shift t by c	cf(x)	scale y 1 by c
f(x) - c	shift I by c	f(cx)	scale × 1 by 2
f(x+c)	shift to by c	-f(x)	flip I
f(x-c)	shift -> by c	f(-x)	flip <>>

2. Let $f(x) = x^2$. Graph each of the following using the ideas from #1 above.

Trigonometry Review

3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α .

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of any three marked points, one of each color on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

5. Without a calculator evaluate:

(b) Use the graph of $f(x) = \sin(2x)$ to determine the domain of $f(x) = \csc(2x)$

$$csc(2x) = \int csin(2x)$$

sin(2x) 70 x= kI kis om integer 3 keZ