Transformation Review

1. Explain what each does to the original graph $y=f(x)$.

2. Let $f(x)=x^{2}$. Graph each of the following using the ideas from \# 1 above.
(a) $f(x)$

(c) $f(x-1)$

(b) $-f(x)$

(d) $f(x-1)-1$

Trigonometry Review
3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α.

$$
\begin{array}{l|l}
10^{2}+4^{2}=c^{2} & \sec \alpha=\frac{1}{\cos \alpha}=\frac{\sqrt{16}}{4} \\
100+16=c^{2} & \csc \alpha=\frac{1}{\sin \alpha}=\frac{\sqrt{16}}{10} \\
116=c^{2} & \cot \alpha=\frac{1}{\tan \alpha}=\frac{2}{5} \\
c=\sqrt{116} &
\end{array}
$$

$$
\sin \alpha=\frac{10}{\sqrt{116}} \quad \cos \alpha=\frac{4}{0116} \quad \tan \alpha=\frac{10}{4}=\frac{5}{2}
$$

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of any three marked points, one of each color on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

5. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
$\frac{\sqrt{3}}{2}$
(b) $\cos \left(\frac{4}{4}\right)=-\frac{\sqrt{2}}{2}$
(c) $\tan \left(\frac{\pi}{\tau}\right)=\frac{\sin (\pi / 4)}{\cos (\pi / 4)}=-1$
6. On the axes below, graph at least two cycles ff $f(x)=\sin x, f(x)=\cos (x)$. Label all x - and y-intercepts.

-2π

7. (a) Graph $y=\sin (2 x)$ ard $y-3-2 \cos (n)$ on adjacent graphs. Label the points $0, \pi / 2, \pi, 3 \pi / 2$ and 2π on the -axis.

(b) Use the graph of $f(x)=\sin (2 x)$ to determine the domain of $\mathrm{f}(\mathrm{x})=\csc (2 \mathrm{x})$

$$
\begin{array}{rl}
\csc (2 x)=\frac{1}{\sin (2 x)} \\
\sin (2 x) \neq 0 \\
x=k \frac{\pi}{2} \quad k \text { is am integer } \\
3 & k \in \mathbb{Z}
\end{array}
$$

