1. Compute the linearization of $f(x)=1 / x$ at $x=2$.

$$
f^{\prime}(x)=-1 / x^{2}
$$

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

$$
f(2)=1 / 2
$$

$$
L(x)=\frac{1}{2}-\frac{1}{4}(x-2)
$$

$$
f^{\prime}(2)=-1 / 4
$$

$0.5-0.75(x-2)$
2. Use your linearization to estimate $1 / 3$.

3. Draw a graph that illustrates the computation you just did. Then use the graph to determine if your estimate for $1 / 3$ is an underestimate or an overestimate.


$$
\begin{aligned}
& \text { Math F251: Chapters } 3 \text { and } 4 \text { Review } \\
& \rightarrow(-\infty,-1),(1, \infty) \\
& \text { The problems on this page refer to the function } f(x)=\frac{1}{x}+x \text {. } \\
& \text { 4. On what intervals is the function Increasing? Decreasing? } \\
& f^{\prime}(x)=\frac{-1}{x^{2}}+1 \\
& =\frac{x^{2}-1}{x^{2}} \\
& \text { 5. Find the critical points of } f(x) \text {. ifc. } \\
& x=-1,1 \\
& \longrightarrow f^{\prime}(x)= \\
& f^{\prime}\left(-\frac{1}{2}\right)<0 \\
& (x-1)(x-1)
\end{aligned}
$$

6. Use the first derivative test to classify the only positive critical point as a local min/max/neither.

7. Use the second derivative test to classify the only positive critical point as a local min/max if this is possible

8. A circular metal plate is being heated in an oven. The radius of the plate is increasing at a rate of $0.01 \mathrm{~cm} / \mathrm{min}$ when the radius is 50 cm . How fast is the area of the plate increasing?
radius: $r$, cm area of plate: $A, \mathrm{~cm}^{2}$ $\frac{d r}{d t}=0.01 \frac{c_{m}}{\mathrm{~min}}$ when $r=50 \mathrm{~cm}$

Want $\frac{d A}{d t}, \quad A=\pi r^{2}$

$$
\frac{d A}{d K}=\pi \cdot 2 r \frac{d r}{d t}=2 \pi \cdot 80 \cdot \frac{1}{100}
$$

9. A Norman window is has racerangular base and a semi. -circle on top. What d.

Applied Opt.


Area: $2 r h+\frac{1}{2} \pi r^{2}$
Perimeter $p=2 h+2 r+\pi r$

$$
\begin{gathered}
2 r h+\frac{1}{2} \pi r^{2}=4 \\
2 r h=4-\frac{1}{2} \pi r^{2}
\end{gathered}
$$

$$
\begin{aligned}
& h=\frac{4}{2 r}-\frac{1}{4} \pi r \\
&=\frac{2}{r}-\frac{1}{4} \pi r=\frac{8-\pi r^{2}}{4 r} \\
& P= 2 h+2 r+\pi r \\
& P= \frac{8-\pi r^{2}}{2 r}+2 r+\pi r \\
&= \frac{4}{r}-\frac{\pi r}{2}+2 r+\pi r \\
&= \frac{4}{r}+\left(2+\frac{\pi}{2}\right) r \\
& \frac{d P}{d r}=-\frac{4}{r^{2}}+\left(2+\frac{\pi}{2}\right) \\
&-\frac{4}{r^{2}}+\left(2+\frac{\pi}{2}\right)=0 \\
& r=\frac{4}{2+\pi / 2}=\frac{8}{4+\pi} \\
& r=\sqrt{\frac{8}{4+\pi}} \approx 1.058 \mathrm{ft}
\end{aligned}
$$

$$
h=\frac{8-\pi r^{2}}{4 r} \Leftarrow
$$

slubstitute $r=\sqrt{\frac{8}{4+\pi}}$ into)

$$
h=\sqrt{\frac{8}{4+\pi}}(1)
$$

10. The volume of a cone is given by $V=\frac{1}{3} \pi r^{2} h$ where $r$ is the radius of the base of the cone and $h$ is the height of the cone. Use a differential to estimate the change in volume of the cone if the height is fixed at 9 feet and the radius changes from 5 feet to 5.5 feet.

$$
\begin{aligned}
& d V=\frac{2}{3} \pi r d r h \\
& d V=\frac{2}{3} \pi \cdot 9 \cdot 5 \cdot \frac{1}{2}=15 \pi
\end{aligned}
$$

11. Compute $\lim _{x \rightarrow 0} \frac{\sec (x)-1}{x^{2}}$

12. Consider the curve defined implicitly by

$$
x^{4}+y^{4}=2
$$

a. Show that the point $(1,1)$ lies on this curve.

$$
1^{4}+1^{4}=2
$$

b. Find the slope of the tangent line to the curve at this point.


$$
\begin{aligned}
& y^{\prime}=\frac{-x^{3}}{y^{3}} \\
& y^{\prime}=\frac{-1^{3}}{1^{3}}=-1
\end{aligned}
$$

