1. Gravel is being added to a pile at a rate of rate of $1 + t^2$ tons per minute for $0 \le t \le 10$ minutes. If G(t) is the amount of gravel (in tons) in the pile at time *t*, compute G(10) - G(0). Then compute G(10) assumeing G(0) = 3 tons. **2.** There is a population of bacteria with 3000 cells at time t = 0. It grows at a rate of $1000 \cdot 5^t$ cells per hour. What is the population of the bacteria at time t = 1 hours?

- 3. Water flows from a tank at a rate of $r(t) = 3t^2 t^3$ liters per minute from t = 0 to t = 3 minutes.
 - **a**. Compute r(0), r(1) and r(3), and explain what these quantities mean in everyday language. Your answer should include units.

b. Compute the total amount of water that drains from the tank from time t = 0 to t = 3.

c. At what time is the rate of flow at a maximum? (Only consider *t* in the interval [0, 3].)

4. Challenge! Compute

$$\frac{d}{dx}\int_5^{x^3}\cos(\sqrt{s})\ ds.$$

Hint: Let $H(x) = \int_5^x \cos(\sqrt{s}) ds$. You're interested in $H(x^3)$. Apply the Chain Rule!