1. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$. Then compute $G(10)$ assumeing $G(0)=3$ tons.
2. There is a population of bacteria with 3000 cells at time $t=0$. It grows at a rate of $1000 \cdot 5^{t}$ cells per hour. What is the population of the bacteria at time $t=1$ hours?
3. Water flows from a tank at a rate of $r(t)=3 t^{2}-t^{3}$ liters per minute from $t=0$ to $t=3$ minutes.
a. Compute $r(0), r(1)$ and $r(3)$, and explain what these quantities mean in everyday language. Your answer should include units.
b. Compute the total amount of water that drains from the tank from time $t=0$ to $t=3$.
c. At what time is the rate of flow at a maximum? (Only consider t in the interval [0, 3].)
4. Challenge! Compute

$$
\frac{d}{d x} \int_{5}^{x^{3}} \cos (\sqrt{s}) d s
$$

Hint: Let $H(x)=\int_{5}^{x} \cos (\sqrt{s}) d s$. You're interested in $H\left(x^{3}\right)$. Apply the Chain Rule!

