1. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$. Then compute $G(10)$ assuming $G(0)=3$ tons.

$$
\begin{aligned}
& G^{\prime}(t)=1+t^{2} \\
& \iint_{0}^{10} G^{\prime}(t) d t=G(10)-G(0) \\
& \text { honslimante } \\
& \rightarrow \int_{0}^{10} \overbrace{}^{1}(t) d t=\int_{0}^{10}\left(1+t^{2}\right) d t \\
& =t+\left.\frac{t^{3}}{3}\right|_{0} ^{10} \\
& =10+\frac{10^{3}}{3}=343^{1 / 3} \text { tons } \\
& G(10)-G(0)=3431 / s \text { tors } \\
& G(10)-3=3431 / 3 \text { tons } \\
& G(10)=346^{1 / 3} \text { tons }
\end{aligned}
$$

2. There is a population of bacteria with 3000 cells at time $t=0$. It grows at a rate of $1000 \cdot 5^{t}$ cells per hour. What is the population of the bacteria at time $t=1$ hours?
$P(t)$: F of cells at tame t hours.

$$
\begin{array}{rlr}
P(0) & =3000 & \\
P^{\prime}(t) & =1000 \cdot 5^{t} & \frac{d}{d t} e^{t}=e^{t} \\
P(1)-P(0) & =\int_{0}^{1} P^{\prime}(t) d t \quad \frac{d}{d t} e^{7 t}=7 e^{7 t} \\
\frac{d}{d t} 5^{t}=\ln (5) 5^{t} & =\int_{0}^{1} 1000 \cdot 5^{t} d t \quad \frac{d}{d t} e^{a t}=a e^{a t} \\
& =1000 \int_{0}^{1} 5^{t} d t \quad \frac{d}{d t} \frac{1}{a} e^{a t}=e^{a t} \\
e_{i}^{a t} & =1000 \int_{0}^{1} e^{\ln (5) t} d t \frac{d}{d t} \frac{1}{7} e^{7 t}=e^{7 t} \\
& =\left.1000 \cdot \frac{1}{\ln (5)^{2}} e^{\ln (5) t}\right|_{0} ^{1} \\
& =\frac{1000}{\ln (5)^{2}}\left[e^{\ln (5) \cdot 1}-e^{\ln (5) \cdot 0}\right]
\end{array}
$$

$$
\begin{aligned}
& =\frac{1000}{\ln (5)}[5-1] \\
& =\frac{4000}{\ln (5)}=2485 \mathrm{cell} \\
P(1)-P(0) & =2485 \text { cells } \\
P(1)-3000 & =2485 \\
P(1) & =5485 \text { cells }
\end{aligned}
$$

$$
\begin{aligned}
5^{t} \quad 5 & =e^{\ln (5)} \quad\left(a^{b}\right)^{c}=a^{b c} \\
5^{t} & =\left(e^{\ln (5)}\right)^{t} \\
& =e^{\ln (5) t}
\end{aligned}
$$

3. Water flows from a tank at a rate of $r(t)=3 t^{2}-t^{3}$ liters per minute from $t=0$ to $t=3$ minutes.
a. Compute $r(0), r(1)$ and $r(3)$, and explain what these quantities mean in everyday language. Your answer should include units.

$$
\left.\begin{array}{l}
r(0)=3 \cdot 0^{2}-0^{3}=0 \\
r(1)=3 \cdot 1^{2}-1^{3}=2 \\
r(3)=3 \cdot 3^{2}-3^{3}=0
\end{array}\right] \mathrm{l} / \mathrm{min}
$$

The flow rate mas O lan at $t=0$ and 3 , but 2lpran of $t=1$.
b. Compute the total amount of water that drains from the tank from time $t=0$ to $t=3$.

c. At what time is the rate of flow at a maximum? (Only consider t in the interval [0, 3].)

$$
\begin{aligned}
r(t) & =3 t^{2}-t^{3} \\
r^{\prime}(t) & =6 t-3 t^{2} \\
& =3 t(2-t) \\
r(t) & =0 \text { at } t=0, t=2
\end{aligned}
$$

$$
\begin{aligned}
V(3)-V(0) & =\int_{0}^{3} V^{\prime}(t) d t \\
& =\int_{0}^{3} 3 t^{2}-t^{3} d t \\
& =t^{3}-\left.\frac{t^{4}}{7}\right|_{0} ^{3} \\
& =3^{3}-\frac{3^{4}}{4}=6.75 l
\end{aligned}
$$

4. Challenge! Compute

$$
\frac{d}{d x} \int_{5}^{x^{3}} \cos (\sqrt{s}) d s
$$

Hint: Let $H(x)=\int_{5}^{x} \cos (\sqrt{s}) d s$. You're interested in $H\left(x^{3}\right)$. Apply the Chain Rule!

$$
\begin{aligned}
& F(x)=\int_{S}^{x} \cos (\sqrt{s}) d s \\
& F^{\prime}(x)=\cos (\sqrt{x}) \quad(F T C \text { Part I!)} \\
& \frac{d}{d x} F\left(x^{3}\right)=F^{\prime}\left(x^{3}\right) \cdot 3 x^{2} \quad \text { (chain rule) } \\
& \frac{d}{d x} \int_{S}^{x^{3}} \cos (\sqrt{s}) d s=\cos \left(\sqrt{x^{3}}\right) \cdot 3 x^{2}
\end{aligned}
$$

