1. Compute $\int_{1}^{2} \frac{t^{3}-3 t^{2}}{t^{4}} d t$.
2. Compute $\frac{d}{d x} \int_{5}^{x} \cos (\sqrt{s}) d s$.
3. Compute $\int x^{2}(3-x) d x$
4. Compute $\int 9 \sqrt{x}-3 \sec (x) \tan (x) d x$
5. Snow is falling on my garden at a rate of

$$
A(t)=10 e^{-2 t}
$$

kilograms per hour for $0 \leq t \leq 2$, where t is measured in hours.
a. If $m(t)$ is the total mass of snow on my garden, how are $m(t)$ and $A(t)$ related to each other?
b. What does $m(2)-m(0)$ represent?
c. Find an antiderivative of $A(t)$.
d. Compute the total amount of snow accumulation from $t=0$ to $t=1$.
e. Compute the total amount of snow accumulation from $t=0$ to $t=2$.
f. From the information given so far, can you compute $m(2)$?
g. Suppose $m(0)=9$. Compute $m(1)$ and $m(2)$.
6. A airplane is descending. Its rate of change of height is $r(t)=-4 t+\frac{t^{2}}{10}$ meters per second.
a. if $A(t)$ is the altitude of the airplane in meters, how are $A(t)$ and $r(t)$ related?
b. What physical quantity does $\int_{1}^{3} r(t) d t$ represent?
c. Compute $A(3)-A(1)$.
7. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$.
8. Challenge! Compute

$$
\frac{d}{d x} \int_{5}^{x^{3}} \cos (\sqrt{s}) d s
$$

Hint: Let $H(x)=\int_{5}^{x} \cos (\sqrt{s}) d s$. You're interested in $H\left(x^{3}\right)$. Apply the Chain Rule!
9. Challenge! Compute

$$
\frac{d}{d x} \int_{x}^{x+1} \sqrt{s^{2}+1} d s
$$

