1. Compute $\int_{1}^{2} \frac{t^{3}-3 t^{2}}{t^{4}} d t$.

$$
\begin{aligned}
\int_{1}^{2} \frac{t^{3}-3 t^{2}}{t^{4}} d t=\int_{1}^{2} \frac{1}{t}-\frac{3}{t^{2}} d t & =\ln (|t|)+\left.\frac{3}{t}\right|_{1} ^{2} \\
& =\ln (2)-\ln (1)+\frac{3}{2}-\frac{3}{1} \\
& =\ln (2)-3 / 2
\end{aligned}
$$

2. Compute $\frac{d}{d x} \int_{5}^{x} \cos (\sqrt{s}) d s$.

$$
\cos (\sqrt{x}) \quad(!) \cup^{11}
$$

3. Compute $\int x^{2}(3-x) d x$

$$
\int 3 x^{2}-x^{3} d x=x^{3}-\frac{x^{4}}{4}+C
$$

4. Compute $\int 9 \sqrt{x}-3 \sec (x) \tan (x) d x$

$$
\int 9 \sqrt{x}-3 \sec (x) \tan (x) d x=6 x^{3 / 2}-3 \sec (x)+C
$$

5. Snow is falling on my garden at a rate of

$$
A(t)=10 e^{-2 t}
$$

$$
[G]=\text { hows }
$$

$$
[A(G)]=\mathrm{kg} / \text { hour }
$$

kilograms per hour for $0 \leq t \leq 2$, where t is measured in hours.

$$
[m(t)]=k g
$$

a. If $m(t)$ is the total mass of snow on my garden, how are $m(t)$ and $A(t)$ related to each other?

$$
A(t)=u n^{\prime}(t)
$$

b. What does $m(2)-m(0)$ represent?

Chase in muss of snow on garden between $t=0$
c. Find an antiderivative of $A(t)$. and $t=2$ hours.

$$
-5 e^{-2 t}
$$

No
g. Suppose $m(0)=9$. Compute $m(1)$ and $m(2)$.

$$
\begin{gathered}
m(1)=m(0)+(m(1)-m(0))=9+5\left(1-e^{-2}\right) \\
m(2)=m(0)+(m(2)-m(0))=9+5\left(1-e^{-4}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { d. Compute the total amount of snow accumulation from } t=0 \text { to } t=1 \text {. } \\
& \int_{0}^{1} 10 e^{-2 t} d t=-\left.5 e^{-2 t}\right|_{0} ^{1}=-5 e^{-21}-\left(-5 e^{-2 \cdot 0}\right) \\
& \text { e. Compute the total amount of snow accumulation from } t=0 \text { to } t=2 \text {. } \\
& \int_{0}^{2} 10 e^{-2 t} d t=-\left.5 e^{-2 t}\right|_{0} ^{2}=5\left(1-e^{-4}\right) \\
& =-5 e^{-2}+5 \\
& =5\left(1-e^{-2}\right) \\
& =4.32 \mathrm{~kg}
\end{aligned}
$$

6. A airplane is descending. Its rate of change of height is $r(t)=-4 t+\frac{t^{2}}{10}$ meters per second.
a. if $A(t)$ is the altitude of the airplane in meters, how are $A(t)$ and $r(t)$ related?

$$
A^{\prime}(t)=r(t)
$$

$$
\sum_{k=1}^{n} r\left(\epsilon_{k}^{*}\right) \cdot \sqrt{\Delta t}
$$

b. What physical quantity does $\int_{1}^{3} r(t) d t$ represent?

$$
\checkmark \quad \longrightarrow[r(t)]=m / s,[d t]=s
$$

Units: m

\rightarrow Chase in height from $t=1$ to $t=3$ seconds

$$
\begin{aligned}
\int_{1}^{3} r(t) d t=\int_{1}^{3}-4 t+\frac{t^{2}}{10} d t & =-2 t^{2}+\left.\frac{t^{3}}{30}\right|_{1} ^{3} \\
& =\left[-2 \cdot 3^{2}+\frac{3^{3}}{30}\right]-\left[-2 \cdot 1^{2}+\frac{1^{3}}{30}\right]
\end{aligned}
$$

7. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$.
