1. Compute
$$\int_{1}^{2} \frac{t^{3} - 3t^{2}}{t^{4}} dt$$
.
 $\int_{1}^{2} \frac{t^{3} - 3t^{2}}{t^{4}} dt = \int_{1}^{2} \frac{1}{t} - \frac{3}{t^{2}} dt = \ln(|t|) + \frac{3}{t} \int_{1}^{2} \frac{1}{t} - \frac{3}{t^{2}} dt = \ln(|t|) + \frac{3}{t} - \frac{3}{t} = \ln(|t|) + \frac{3}{t} + \frac{3}{t} + \frac{1}{t} + \frac{3}{t} + \frac{1}{t} + \frac{3}{t} + \frac{1}{t} + \frac{3}{t} + \frac{1}{t} + \frac{3}{t} = \frac{1}{t} + \frac{3}{t} + \frac{1}{t} + \frac{1$

3. Compute $\int x^2(3-x) \, dx$

$$\int 3x^{2} - x^{3} dx = x^{3} - \frac{x^{4}}{4} + C$$

4. Compute $\int 9\sqrt{x} - 3\sec(x)\tan(x) dx$

$$\int 9 \int x - 3 \sec(x) \tan(x) dx = 6 x^{3/2} - 3 \sec(x) + C$$

5. Snow is falling on my garden at a rate of

$$A(t) = 10e^{-2t}$$

kilograms per hour for $0 \le t \le 2$, where *t* is measured in hours.

a. If m(t) is the total mass of snow on my garden, how are m(t) and A(t) related to each other?

$$A(t) = un'(t)$$

b. What does m(2) - m(0) represent?

c. Find an antiderivative of A(t).

- 5 e^{-2t}

d. Compute the total amount of snow accumulation from t = 0 to t = 1. $\int_{0}^{1} |\partial e^{-2t} dt = -\int_{0}^{2} e^{-2t} | = -\int_{0}^{2} e^{-2t} (-\int_{0}^{-2} e^{-2t}) e^{-2t} dt = -\int_{0}^{2} e^{-2t} \int_{0}^{2} e^{-2t} dt = -\int_{0}^{2} e^{-2t} \int_{0}^{2} e^{-2t} \int_{0}$

LET = hours [A(6)] = kg/hour $\left[m(b)\right] = kg$

- 6. A airplane is descending. Its rate of change of height is $r(t) = -4t + \frac{t^2}{10}$ meters per second.
 - **a**. if A(t) is the altitude of the airplane in meters, how are A(t) and r(t) related?

