

 $f(x) = \frac{1}{2} x^2 \cdot \frac{1}{2}$ **1.** Use n = 4 rectangles with right-hand endpoints. Overestimate or underestimate?

2. Use *n* = 4 rectangles with left-hand endpoints. Overestimate or underestimate?

$$A = A + f(x_{0}) + A + f(x_{1}) + A + f(x_{2}) + A + f(x_{3})$$

$$A = A + f(x_{0}) + A + f(x_{1}) + A + f(x_{3}) + A + f(x_{3})$$

$$A = A + f(x_{0}) + A + f(x_{1}) + A + f(x_{3}) + A + f(x_{3})$$

$$f(x_{0}) = 1 + \frac{1}{2} + \frac{1}{2}$$

3. From your last two answers, give your best estimate for the area.

$$\frac{1}{2}(3.375+2.875)=3.375$$

4. Use *n* = 4 rectangles with midpoints. Overestimate or underestimate?

5. Use n = 10 rectangles with midpoints.

6. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 1.5 hour time period. We take speedometer readings every 15 minutes and then record them in the table below. Estimate the distance traveled by the car. What method are you using?

		€0 €	, tz	63	64	to	4	
	Time (minutes)	0 1	5 30	45	60	75	90	
	Velocity (mi/h)	17 2	1 24	29	32	31	28	
(V6 V	, Uz	Vz	4	VS	VG	
At= + hoar								
$\Delta x_{l} = V_{o} \Delta t =$	17.1	5)(z) a	C.				
1+2= V, 1=	21.1		17.	1+	21.		-24	1+29 1 + 31 2 + 28 1
1 +3 = V2 1 =	24. 14			4		Т		+ + <i>i</i> +
$A_{4\psi} = V_3 A =$	29.14		-	([7 +	21	+24	-+29+3(+29)+
1×5 = V414 =	3 (. 1/4-		15	41	24	5	mil	eL
$A \times_0 = VS SE = 2$	-8 - 11 - 11	(t) liter	s ner b		The r	ate d	ecreas	ed as time passed
" On realized out of a	and at a rate Of 7	() me	o per r	iour.	THC I	une u	uo	ea ao anne pubbea

Oil leaked out of a tank at a rate of r(t) liters per hour. The rate decreased as time passed and values of the rate at 2 hour time intervals are shown in the table. Estimate how much oil leaked out. What method are you using? Is it an overestimate or an underestimate.

t (h)	0	2	4	6	8	10
r(t) (L/h)	8.7	7.6	6.8	6.2	5.7	5.3

1. Use n = 4 rectangles with right-hand endpoints. Overestimate or underestimate?

2. Use *n* = 4 rectangles with left-hand endpoints. Overestimate or underestimate?

3. From your last two answers, give your best estimate for the area.

 $f(x_0) \Delta x_{+} f(x_0) \Delta x_{+} f(x_$ 1.--

1. Use *n* = 4 rectangles with right-hand endpoints. Overestimate or underestimate?

2. Use *n* = 4 rectangles with left-hand endpoints. Overestimate or underestimate?

3. From your last two answers, give your best estimate for the area.

 $A \approx \frac{1}{2} \int 3.875 + 2.875$ 3.375

ムメニシ $f(x_i): 1+\frac{1}{2}(\frac{1}{2})^2 = 1/8$ X0:0 X1:0.5 F(+2): 1.5 Xz: $f(y_3): \frac{1}{2}(1.5)^2 + 1 = 2.12S$ ×3:1.5 $f(x_r) \cdot 3$ X4: Z f(x) 1x + f(x) 1x + f(xg) 1x + f(xg) 1x + f(xg) 1x $(f(x_1)+f(x_2)+f(x_3)+f(x_4))-\Delta x_1$ > 3.875

4. Use *n* = 4 rectangles with midpoints. Overestimate or underestimate?

 $f(x_{1}) \Delta x + f(x_{2}) \Delta x + \cdots + f(x_{10}) \Delta x$ [f(x_{1}) + f(x_{2}) - \cdots + f(x_{10})] \Delta x = 3.54 **6.** Suppose the odometer on our car is broken and we want to estimate the distance driven over a 1.5 hour time period. We take speedometer readings every 15 minutes and then record them in the table below. Estimate the distance traveled by the car. What method are you using?

Time (minutes)	0	15	30	45	60	75	90
Velocity (mi/h)	17	21	24	29	32	31	28

First time interval: 17 mph for 15mm = 4 hr (17. = 414 miles. 738.5 miles 2⁻¹ time internal: 21. 1, miles Our fort 30 mins (17+21).7 $17 \cdot \frac{1}{7} + 21 \cdot \frac{1}{7} + 24 + 29 \cdot \frac{1}{7} + 32 \cdot \frac{1}{7} + 31 \cdot \frac{1}{7}$ Over 90 mins:

7. Oil leaked out of a tank at a rate of r(t) liters per hour. The rate decreased as time passed and values of the rate at 2 hour time intervals are shown in the table. Estimate how much oil leaked out. What method are you using? Is it an overestimate or an underestimate.

t (h)	0	2	4	6	8	10
r(t) (L/h)	8.7	7.6	6.8	6.2	5.7	5.3

17.1 + 31.1 32.1 9.1 241 +2 Ŀ . . 21 (V) - 24 21 17 5 0.5 $\frac{1}{4} \cdot 17 + \frac{1}{4} \cdot 21 + \frac{1}{4} \cdot 24$