An antiderivative of a function $f(x)$ is a function $F(x)$ with $F^{\prime}(x)=f(x)$.
If $F(x)$ is a particular antiderivative of $f(x)$, then so is $F(x)+C$ for any constant C.
If the domain of $f(x)$ is an interval, and if $F(x)$ is a particular rantiderivative of $f(x)$, then any antiderivative has the form $F(x)+C$ for some constant C.

If $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ and $g(x)$ then

- $a F(x)$ is an antiderivative of $a f(x)$ for any constant a.
- $F(x)+G(x)$ is an antiderivative of $f(x)+g(x)$.

1. Find a particular antiderivative of $x-x^{2}+9$.

$$
\frac{1}{2} x^{2}-\frac{x^{3}}{3}+9 x
$$

2. Find allantiderivatives of $x-x^{2}+9$.

$$
\frac{1}{2} x^{2}-\frac{x^{3}}{3}+9 x+C
$$

3. Find an antiderivative of $1 / x^{2}$.

$$
F(x)=\frac{-1}{x} \quad \text { sine } F^{\prime}(x)=\frac{-1 \cdot(-1)}{x^{2}}=\frac{1}{x^{2}}
$$

4. If $F(x)$ is your answer to the previous problem, does every antiderivative of $1 / x^{2}$ have the form $F(x)+C$ for some constant C ?

5. For each of the following functions, find a particular antiderivative.

Function	Antiderivative		
x	$\frac{1}{2} x^{2}$		
x^{2}	$\frac{1}{3} x^{3}$		
x^{3}	$\frac{1}{4} x^{4}$		
$x^{k}(k \neq-1)$	$\frac{1}{k+1} x^{k+1}$		
x^{-1} for $x>0$	$\ln (x)$		
x^{-1} for $x<0$	$\ln (-x)$		
x^{-1} for all x	$\ln (\|x\|)$		
$\rightarrow x \neq 0$			

Function	Antiderivative
$\sin (x)$	$-\cos (x)$
$\cos (x)$	$\sin (x)$
e^{x}	e^{x}
$1 /\left(1+x^{2}\right)$	$\arctan (x)$
$\sec ^{2}(x)$	$\tan (x)$
$\sec (x) \tan (x)$	$\sec (x)$
1	x

6. Compute three different antiderivatives of $f(x)=x^{20}+4 x^{10}+8$

7. Compute an antiderivative of $f(t)=\frac{5 \sec t \tan t}{3}-4 \sin t-\frac{1}{t}+e^{2}$

$$
\frac{5}{3} \sec (t)+4 \cos (t)-\ln (|t|)+e^{2} t
$$

8. Compute an antiderivative of $f(x)=\cos (3 x)$.

$$
\frac{1}{3} \sin (3 x)
$$

9. Compute the antiderivative of $f(t)=t^{2}$ that equals 5 when $t=2$.

$$
F(t)=\frac{t^{3}}{3}+C
$$

$$
\begin{array}{r}
F(2)=\frac{8}{3}+C=5 \\
C=7 / 3
\end{array}
$$

$$
F(t)=\frac{t^{3}}{3}+\frac{7}{3}
$$

10. A particle moves in a straight line and has acceleration given by $a(t)=5 \cos t-2 \sin t$. Its initial velocity is $v(0)=-6 \mathrm{~m} / \mathrm{s}$ and its initial position is $s(0)=2 \mathrm{~m}$. Find its position function $s(t)$.

$$
\begin{aligned}
& s^{\prime \prime}(t)=5 \cos (t)-2 \sin (t) \\
& s^{\prime}(t)=5 \sin (t)+2 \cos (t)+c_{1} \\
& s(t)=-5 \cos (t)+2 \sin (t)+c_{1} t+c_{0} \\
& s(0)=-5+c_{0}=2 \Rightarrow c_{0}=7 \\
& s^{\prime}(0)=2+c_{1}=-6 \Rightarrow c_{1}=-8 \\
& s(t)=-5 \cos (t)+2 \sin (t)-8 t+7
\end{aligned}
$$

11. A stone is dropped from a cliff and hits the ground three seconds later. How high is the cliff? (Acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.)

$$
\begin{aligned}
& h^{\prime \prime}(t)=-9.8 \\
& h^{\prime}(t)=-9.8 t+C_{1} \\
& h(t)=-9.8 \frac{t^{2}}{2}+C_{1} t+C_{0} \\
& h^{\prime}(0)=0 \Rightarrow C_{1}=0 \\
& h(3)=0 \Rightarrow-\frac{9.8 .9}{2}+C_{0}=0 \Rightarrow C_{0}=+44.1 \\
& h(0)=-9.8 \cdot 0^{2} / 2+44.1 \quad \text { Cliffherght:44.1 m }
\end{aligned}
$$

12. What constant acceleration is needed to take a car from 10 mph to 60 mph in 5 seconds?

$$
\begin{aligned}
& x^{\prime \prime}(t)=a, \text { const } \\
& \begin{array}{l}
x^{\prime}(t)=a t+C \\
\text { velocity, } v(t)
\end{array} \quad \begin{aligned}
v(0) & =10 \Rightarrow C=10 \\
v(t) & =a t+10 \\
v(5) & =a \cdot 5+10=60 \\
& \Rightarrow a
\end{aligned}=10 \mathrm{mph} / \mathrm{s} \\
& \\
&
\end{aligned}
$$

