An **antiderivative** of a function f(x) is a function F(x) with F'(x) = f(x).

If F(x) is a particular antiderivative of f(x), then so is F(x) + C for any constant *C*.

If the domain of f(x) is an interval, and if F(x) is a particular rantiderivative of f(x), then any antiderivative has the form F(x) + C for some constant *C*.

If F(x) and G(x) are antiderivatives of f(x) and g(x) then

- aF(x) is an antiderivative of af(x) for any constant *a*.
- F(x) + G(x) is an antiderivative of f(x) + g(x).
- **1.** Find a particular antiderivative of $x x^2 + 9$.

$$\frac{1}{2}x^2 - \frac{x^3}{3} + 9x$$

2. Find all antiderivatives of $x - x^2 + 9$.

$$\frac{1}{2}x^2 - \frac{x^3}{3} + 9x + C$$

3. Find an antiderivative of $1/x^2$.

4. If F(x) is your answer to the previous problem, does every antiderivative of $1/x^2$ have the form F(x) + C for some constant *C*?

 $\int_{-\frac{1}{x}}^{-\frac{1}{x}} \frac{x}{70}$ F(x) =

Function	Antiderivative		Function	Antiderivative
x	1 × 2'		sin(x)	-cos(x)
x^2	1×3		$\cos(x)$	5m(x)
x^3	-+ x+		e^x	e×
x^k $(k \neq -1)$	$\frac{1}{k+1} \times \frac{k+1}{k+1}$		$1/(1+x^2)$	arcton(4)
x^{-1} for $x > 0$	In(x)		$\sec^2(x)$	ton(x)
x^{-1} for $x < 0$	ln(-x)		$\sec(x)\tan(x)$	sec(x)
x^{-1} for all x	ln(x)		1	X

5. For each of the following functions, find a particular antiderivative.

6. Compute three different antiderivatives of $f(x) = x^{20} + 4x^{10} + 8$

$$F(x) = \frac{x^{2}}{21} + \frac{4x''}{11} + 8x + \frac{5}{2} \frac{19}{17}$$

5 section t = 1 = 22

7. Compute an antiderivative of $f(t) = \frac{5 \sec t \tan t}{3} - 4 \sin t - \frac{1}{t} + e^2$

$$\frac{5}{3}$$
 sec(t) + 4 cos(t) - ln(1t1) + e²t

8. Compute an antiderivative of $f(x) = \cos(3x)$.

$$\frac{1}{3}$$
 sin (3x)

9. Compute the antiderivative of $f(t) = t^2$ that equals 5 when t = 2.

10. A particle moves in a straight line and has acceleration given by $a(t) = 5 \cos t - 2 \sin t$. Its initial velocity is v(0) = -6 m/s and its initial position is s(0) = 2 m. Find its position function s(t).

$$S''(t) = 5\cos(t) - 2\sin(t)$$

$$S'(t) = 5\sin(t) + 2\cos(t) + C_{1}$$

$$S(t) = -5\cos(t) + 2\sin(t) + C_{1}t + C_{0}$$

$$S(0) = -5 + C_{0} = 2 = 7 \quad C_{0} = 7$$

$$S'(0) = 2 + C_{1} = -6 = 7 \quad C_{1} = -8$$

$$S(t) = -5\cos(t) + 2\sin(t) - 8t + 7$$

11. A stone is dropped from a cliff and hits the ground three seconds later. How high is the cliff? (Acceleration due to gravity is 9.8 m/s^2 .)

$$h'(t) = -9.8$$

$$h'(t) = -9.8t + C_{1}$$

$$h(t) = -9.8\frac{t^{2}}{2} + C_{1}t + C_{0}$$

$$h'(t) = 0 \implies C_{1} = 0$$

$$h(t) = 0 \implies C_{1} = 0$$

$$h(t) = 0 \implies C_{1} = 0$$

$$h(t) = -9.8 \cdot \frac{0}{2} + C_{0}t + C_{0}t = 0 \implies C_{0}t = t + t, t$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t = 0$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t = 0$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t = 0$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t = 0$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t = 0$$

$$h(t) = -9.8 \cdot \frac{0}{2} + 4t, t = 0 \implies C_{0}t = t + t, t = 0$$

12. W

$$x''(t) = a, const$$

 $x'(t) = at + C$
 $v(t) = at + 10$
 $v(t) = at + 10$
 $v(t) = a + 10 = 60$
 $v(5) = a + 10 = 60$
 $= a = 10 \text{ mph}/s$
 $\approx 4.4 \text{ m}/s^2$