In the first part of this worksheet we will get to know a method for computing an approximation of $\sqrt{2}$ to many digits of accuracy using only addition, subtraction, multiplication and division, and indeed using only a few such operations.

1. Consider the function

$$
F(x)=x^{2}-2
$$

If we solve $F(a)=0$ for some $a \geq 0$, what is the value of a ?

$$
a=\sqrt{2}
$$

2. Find the linearization $L(x)$ of $F(x)$ at $x=2$. I eave your answer in point-slope form.
$F^{\prime}(2) \rightarrow$ slope of tangent line

$$
\begin{aligned}
(2, F(2)) \quad y-2 & =4(x-2) \\
y & =2+4(x-2)=L(x)
\end{aligned}
$$

$$
F^{\prime}(2)=4
$$

$$
(2, F(2))=(2,2)
$$

3. I've graphed $F(x)$ for you below. Add to this diagram the graph of $L(x)$.

4. Find the number x_{1} such that $L\left(x_{1}\right)=0 . \quad L\left(v_{1}\right)=0$

$$
\begin{array}{r}
2+4\left(x_{1}-2\right)=0 \\
4\left(x_{1}-2\right)=-2
\end{array} \quad \begin{aligned}
& x_{1}-2=-\frac{1}{2} \\
& x_{1}=2-\frac{1}{2}=\frac{3}{2}=1.5
\end{aligned}
$$

5. What good is the number x_{1} ? Keep in mind that you want to solve $F(x)=0$. You solved $L(x)=0$ instead.

$$
\text { Sine } F(x) \approx L(x) \text { for } x \operatorname{newar}^{2} \text {, if } L(3 / 2)=0, F(3 / 2) \approx 0 \text {. }
$$

6. In the diagram above, label the point x_{1} on the x-axis.

$$
y_{0}+m\left(x-x_{0}\right)
$$

7. Let's do it again! Find the linearization $L(x)$ of $F(x)$ at $x=x_{1}=\frac{3}{2}$

$$
\begin{aligned}
& F\left(x_{1}\right)=x_{1}^{2}-2=\left(\frac{9}{4}\right)-2=\frac{1}{4} \\
& F^{\prime}\left(x_{1}\right)=2 x_{1}=2 \cdot \frac{3}{2}=3 \quad L(x)=\frac{1}{4}+3\left(x-\frac{3}{2}\right)
\end{aligned}
$$

8. Add the graph of this new linearization to your diagram on the first page.
9. Find the number x_{2} such that $L\left(x_{2}\right)=0$. Then label the point $x=x_{2}$ in the diagram.

$$
\begin{aligned}
& \frac{1}{4}+3\left(x_{2}-\frac{3}{2}\right)=0 \\
& 3\left(x_{2}-\frac{3}{2}\right)=-\frac{1}{4} \\
& x_{2}=\frac{3}{2}-\frac{1}{12}=\frac{17}{12}
\end{aligned}
$$

$$
\frac{17}{12}=1.416 \ldots \sqrt{2}=1.414 \ldots
$$

11. Let's be a little more systematic. Suppose we have an estimate x_{k} for $\sqrt{2}$.

- Compute $F\left(x_{k}\right) . \quad x_{k}^{2}-Z$
- Compute $F^{\prime}\left(x_{k}\right)$. $2 X_{k}$
- Compute the linearization of $F(x)$ at $x=x_{k}$.

$$
L(x)=\left(x_{k}^{2}-2\right)+2 x_{k}\left(x-x_{k}\right)
$$

- Find the number x_{k+1} such that $L\left(x_{k+1}\right)=0$. You should try to find as simple an expression as you can.

$$
\begin{gathered}
L\left(x_{k+1}\right)=0 \\
\left(x_{k}^{2}-2\right)+2 x_{k}\left(x_{k+1}-x_{k}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
2 x_{k}\left(x_{k+1}-x_{k}\right) & =-\left(x_{k}^{2}-2\right) \\
x_{k+1} & =x_{k}-\frac{\left(x_{k}^{2}-2\right)}{2 x_{k}} \\
& =x_{k}-\frac{x_{k}}{2}+\frac{1}{x_{k}} \\
x_{k+1} & =\frac{x_{k}}{2}+\frac{1}{x_{k}} \\
x_{0} & =2 \\
x_{1} & =\frac{2}{2}+\frac{1}{2}=1+\frac{1}{2}=\frac{3}{2} \Phi\left(x_{k}\right) \\
x_{2} & =\frac{x_{1}}{2}+\frac{1}{x_{1}}=\frac{3 / 2}{2}+\frac{1}{3 / 2}=\frac{3}{4}+\frac{2}{3}=\frac{17}{12}
\end{aligned}
$$

12. Starting with $x_{0}=2$, compute x_{1} and x_{2} with your shiny new formula. Verify that they agree with your earlier expressions for x_{1} and x_{2}.

13. Compute x_{4}. To how many digits does it agree with $\sqrt{2}$?

$$
\begin{array}{ll}
x_{1}=\frac{3}{2}, x_{2}=\frac{17}{12} & x_{3}=1.414215686274 \ldots \\
x_{k+1}=\frac{x_{k}}{2}+\frac{1}{x_{k}} & x_{4}=1.4142135623746899 \\
& \sqrt{2}=1.414213562
\end{array}
$$

Newton's Method In General
We wish to solve $F(x)=0$ for a differentiable function $F(x)$. We have an initial estimate x_{0} for the solution.
Linarization $\quad L(x)=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

$$
\begin{aligned}
& L(x)=0 \\
& F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0 \\
& F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=-F\left(x_{0}\right) \\
& x_{1}=x_{0}-\frac{F\left(x_{0}\right)}{F^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

14. Try to solve

$$
e^{-x}=x
$$

$$
e^{-x}-x=0
$$

by hand.

$$
\begin{aligned}
& e^{-x}=x \\
& \ln \left(e^{-x}\right)=\ln (x) \\
& -x=\ln (x) \rightarrow x=-\ln (x) \\
& \text { here is sa solution between } x=0 \text { and } x=1 .
\end{aligned}
$$

15. Explain why there is a solution between $x=0$ and $x=1$.

$$
\left.\begin{array}{l}
F(x)=e^{-x}-x \\
F(0)=1-0=1 \\
F(1)=e^{-1}-1<0
\end{array}\right] \text { Intermediate Va le Theorem! }
$$

16. Starting with $x_{0}=1$, find an approximation of the solution of $e^{-x}-x=0$ to 6 decimal places.

During your computation, keep track of each x_{k} to at least 10 decimal places of accuracy.

$$
\begin{aligned}
& F(x)=e^{-x}-x \quad \begin{array}{l}
\text { wart } \\
x_{k+1}=x_{k}-\frac{F\left(x_{k}\right)}{F^{\prime}\left(x_{k}\right)}=0 \\
F^{\prime}(x)=-e^{-x}-1 \\
\Phi(x)=x-\frac{e^{-x}-x}{-e^{-x}-1}
\end{array}=x+\frac{e^{-x}-x}{e^{-x}+1} \\
& \\
& =\frac{x+1}{e^{x}+1} \\
& x_{0}=1 \\
& x_{1}=\Phi\left(x_{0}\right)=\frac{2}{e^{1}+1}=\frac{2}{e+1}=0.537883
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=0.5378828427 \ldots \\
& x_{2}=0.5669869914 \ldots \\
& x_{3}=0.5671432859 \ldots \\
& x_{4}=0.5671432904
\end{aligned}
$$

\rightarrow these look trusted

