In the first part of this worksheet we will get to know a method for computing an approximation of $\sqrt{2}$ to many digits of accuracy using only addition, subtraction, multiplication and division, and indeed using only a few such operations.

1. Consider the function

$$F(x) = x^2 - 2.$$

If we solve F(a) = 0 for some $a \ge 0$, what is the value of a?

$$a = \int Z$$

 $a = \int Z$ 2. Find the linearization L(x) of F(x) at x = 2. Deave your answer in point-slope form. $F'(x) = 2 \times F'(x) = 4$ F'(2) -> slope of tingent line

$$(z, F(z))$$
 $y-2 = 4(x-2)$

 $\gamma = 2 + 4(x - 2) = L(x)$

3. I've graphed F(x) for you below. Add to this diagram the graph of L(x).

 $L(v_i) = 0$ **4.** Find the number x_1 such that $L(x_1) = 0$.

$$2 + 4(x_1 - 2) = 0 \qquad x_1 - 2 = -\frac{1}{2} + (x_1 - 2) = -2 \qquad x_1 = 2 - \frac{1}{2} = 1.5$$

= 17/12

X

5. What good is the number x_1 ? Keep in mind that you want to solve F(x) = 0. You solved L(x) = 0 instead.

6. In the diagram above, label the point x_1 on the *x*-axis.

(2, F(2)) = (2, 2)

=(∠)= ∩

F(x)

2

 $Y_0 + m(\chi - \chi_0)$

Math F251: Section 4.8 Worksheet (Newton's Method)

- 7. Let's do it again! Find the linearization L(x) of F(x) at $x = x_1$. = $\frac{3}{2}$ $F(x_1) = \chi_1^2 2 = \left(\frac{9}{4}\right) 2 = \frac{1}{4}$ $F'(x_1) = 2x_1 = 2 \cdot \frac{3}{2} = 3$ $L(x) = \frac{1}{4} + 3(x - \frac{3}{2})$
- 8. Add the graph of this new linearization to your diagram on the first page.
- **9.** Find the number x_2 such that $L(x_2) = 0$. Then label the point $x = x_2$ in the diagram.

$$\frac{1}{4} + 3(x_2 - \frac{3}{2}) = 0$$

$$3(x_2 - \frac{3}{2}) = -\frac{1}{4}$$

$$x_2 = \frac{3}{2} - \frac{1}{12} = \frac{17}{12}$$

how many digits does to agree with $\sqrt{2}$ 12

10. To how many digits does x_2 agree with $\sqrt{2}$

$$\frac{17}{12} = \frac{1.416}{12} = \frac{1.416}{12} = \frac{1.414}{12} = \frac{1.416}{12} = \frac{1.416$$

11. Let's be a little more systematic. Suppose we have an estimate x_k for $\sqrt{2}$.

- Compute $F(x_k)$. $\chi_{\mu}^2 \zeta_{\mu}$
- Compute $F'(x_k)$. 2 XK
- Compute the linearization of F(x) at $x = x_k$.

$$L(x) = \left(\chi_{k}^{2} - Z\right) + Z\chi_{k}\left(\chi - \chi_{k}\right)$$

• Find the number x_{k+1} such that $L(x_{k+1}) = 0$. You should try to find as simple an expression as you can.

 $L(X_{k+1}) = O$ $\binom{2}{X_{k}-2} + 2X_{k}(X_{k+1}-X_{k}) = 0$

12. Starting with $x_0 = 2$, compute x_1 and x_2 with your shiny new formula. Verify that they agree with your earlier expressions for x_1 and x_2 .

See above

13. Compute x_4 . To how many digits does it agree with $\sqrt{2}$?

$$X_{i} = \frac{3}{2}, \quad Y_{2} = \frac{17}{12} \qquad X_{3} = 1.414215686274...$$

$$X_{k+1} = \frac{X_{k}}{2} + \frac{1}{X_{k}} \qquad X_{4} = 1.4142138623746879$$

$$J_{2} = 1.414213862$$

Newton's Method In General

We wish to solve F(x) = 0 for a differentiable function F(x). We have an initial estimate x_0 for the solution.

Linearization
$$L(x) = F(x_0) + F'(x_0)(x - x_0)$$

 $e^{-x} = x$

V

14. Try to solve

 $e^{-x} - x = 0$

by hand.

$$e^{-x} = x$$

$$n(e^{-x}) = l_n(x) - x = -l_n(x)$$

$$-x = l_n(x) \rightarrow x = -l_n(x)$$

15. Explain why there is a solution between x = 0 and x = 1.

$$F(x) = e^{-x} - x$$

$$F(0) = |-0| = |$$

$$F(1) = e^{-1} - |<0|$$

$$Thermediate Value Theorem!$$

16. Starting with $x_0 = 1$, find an approximation of the solution of $e^{-x} - x = 0$ to 6 decimal places. During your computation, keep track of each x_k to at least 10 decimal places of accuracy.

$$F(x) = e^{-x} - x \quad \text{want} \quad F(x) = 0$$

$$x_{k+1} = \left[\begin{array}{c} x_k - \frac{F(x_k)}{F'(x_{k}k)} \\ F'(x) = -e^{-x} - 1 \end{array} \right]$$

$$\Phi(x) = x - \frac{e^{-x} - x}{-e^{-x} - |} = x + \frac{e^{-x} - x}{e^{-x} + |} = \frac{x + |}{e^{x} + |}$$

$$X_{1} = \overline{\Phi}(x_{0}) = \frac{Z}{e^{1}+1} = \frac{Z}{e+1} = 0.537883$$

 $X_0 = |$ X, = 0, 537 8828427- .. $x_2 = 0.5669869914$. X3 = 0.567[432859 ... $X_4 = 0.5671432904$ Shere look trusted