1. Follow the guidelines from the previous worksheet to sketch the graph of
a. What is the function's domain?

$$
f(x)=\frac{2}{x}+\ln (x)
$$



$$
(0, \infty)
$$



$$
f^{\prime}(-x)=-f(x)
$$

No symmetry
not allowed
c. Find a few choice values of $x$ to evaluate the function at.

$$
f(1)=\frac{2}{1}+\ln (1)=2
$$

d. What behaviour occurs for this function at $\pm \infty$ ?

e. Does the function have any vertical asymptotes? Where?

$$
\lim _{x \rightarrow 0^{+}} \frac{2}{x}+\ln (x)=\lim _{x \rightarrow 0^{+}} \frac{1}{x}[2+x \ln (x)]=\infty[2+0]=\infty
$$

f. Find intervals where $f$ is increasing/decreasing and identify critical points.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{2}{x}+\ln (x)\right] \\
& =-\frac{2}{x^{2}}+\frac{1}{x}=\frac{x-2}{x^{2}}
\end{aligned}
$$



$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x} \stackrel{\frac{\infty 0}{\infty 0}}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-1 / x^{2}} \\
& \uparrow \uparrow \\
& \frac{-\infty}{\infty}=\lim _{x \rightarrow 0^{+}}-x \\
& =0 \\
& \lim _{x \rightarrow \ln } x(x)=0 \\
& x \rightarrow 0^{+} \\
& 1 \\
& \text { increasing: }(2, \infty) \\
& \text { decrearra: }(0,2) \\
& \text { critical point, } x=2 \text {, local ain }
\end{aligned}
$$

g. Classify each critical point as a local min/max/neither.

$$
x=2 \text {, local min. }
$$

h. Find intervals where $f$ is concave up/concave down and identify points of inflection

$$
f^{\prime}(x)=\frac{x-2}{x^{2}}
$$

$$
\begin{aligned}
f^{\prime \prime}(x)=\frac{1 \cdot x^{2}-(x-2) \cdot 2 x}{\left(x^{2}\right)^{2}} & =\frac{x^{2}-2 x^{2}+4 x}{x^{4}} \\
& =\frac{x-2 x+4}{x^{3}}=\frac{4-x}{x^{3}}
\end{aligned}
$$


i. Sketch the graph of the function
concave low n
$\tau_{\text {point of inflection }}$

2. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=x \sqrt{4-x^{2}}
$$

a. What is the function's domain?

$$
\begin{aligned}
& f(-x)=f(x) \\
& f(-x)=-f(x)
\end{aligned}
$$

$$
[-2,2]
$$

b. Does this function have any symmetry?

$$
\begin{aligned}
& \text { b. Does this function have any symmetry? } \\
& f(-x)=(-x) \sqrt{4-(-x)^{2}}=-x \sqrt{4-x^{2}}=-f(x)
\end{aligned}
$$

odd
c. Find a few choice values of $x$ to evaluate the function at.

$$
x=0, \pm 2 \quad f(0)=0, f(2)=0, f(-2)=0
$$

d. What behaviour occurs for this function at $\pm \infty$ ?

$$
N A
$$

e. Does the function have any vertical asymptotes? Where?
No asymptotes.
f. Find intervals where $f$ is increasing/decreasing and identify critical points.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2\left(2-x^{2}\right)}{\sqrt{4-x^{2}}} \\
& f^{\prime} \frac{1-1+1}{-2 \uparrow-\sqrt{2} \uparrow \sqrt{2} q^{2}} \\
& \left.f^{\prime}(2), f^{\prime}(-2): D\right) \in E \\
& f(\sqrt{2})=f(-\sqrt{2})=0 \quad \text { dace. dec. }
\end{aligned}
$$

g. Classify each critical point as a local min/max/neither.

leal $m m$
$\sqrt{2}<$ load max $\Omega$
h. Find intervals where $f$ is concave up/concave down and identify points of inflection

$$
f^{\prime \prime}(x)=-2 \frac{x^{3}}{\left(4-x^{2}\right)^{3 / 2}}
$$


point of inflection.
i. Sketch the graph of the function

3. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=\frac{x}{\sqrt{9+x^{2}}}
$$

a. What is the function's domain?
all neal numbers
b. Does this function have any symmetry?

$$
f(-x)=\frac{-x}{\sqrt{9+(-x)^{2}}}=-\frac{x}{\sqrt{9+x^{2}}}=-f(x) \Rightarrow \text { odd }
$$

c. Find a few choice values of $x$ to evaluate the function at.

$$
f(0)=0
$$

d. What behaviour occurs for this function at $\pm \infty$ ?

$$
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{9+x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{9 / x^{2}+1}}=1 ; \lim _{x \rightarrow-\infty} \frac{x}{\sqrt{9+x^{2}}}=-1
$$

e. Does the function have any vertical asymptotes? Where?
None
f. Find intervals where $f$ is increasing/decreasing and identify critical points.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{9}{\left(9+x^{2}\right)^{3 / 2}}>0 \\
& \text { The function } 3 \text { always increasing. }
\end{aligned}
$$

g. Classify each critical point as a local min/max/neither.
None to classify.
h. Find intervals where $f$ is concave up/concave down and identify points of inflection

$$
f^{\prime \prime}(x)=-27\left(9+x^{2}\right)^{-5 / 2} x
$$


conc. up
0
conc how
i. Sketch the graph of the function


