## First Derivative Test

Suppose $f$ is a function with a derivative on $(a, b)$, and if $c$ is a point in the interval with $f^{\prime}(c)=0$.

- If $f^{\prime}(x)>0$ for $x$ just to the left of $c$ and $f^{\prime}(x)<0$ for $x$ just to the right of $c$, then $f$ has a local maximum at $c$.
- If $f^{\prime}(x)<0$ for $x$ just to the left of $c$ and $f^{\prime}(x)>0$ for $x$ just to the right of $c$, then $f$ has a local minimum at $c$.
- If $f^{\prime}(c)=0$ and $f^{\prime}(x)<0$ on both sides of $c$ or $f^{\prime}(x)>0$ on both sides of $c$, then there is neither a local min nor a local max at $c$.


## Second Derivative Test

Suppose $f$ is a function with a continuous second derivative on $(a, b)$, and that $c$ is a point in the interval with $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0$ then $f$ has a local minimum at $c$.
- If $f^{\prime \prime}(c)<0$ then $f$ has a local maximum at $c$.

Concave Up: $f^{\prime}(x)$ increasing; $f^{\prime \prime}(x)>0$
Concave Down: $f^{\prime}(x)$ decreasing; $f^{\prime \prime}(x)<0$
Point of Inflection: Value $x$ where concavity changes; often $f^{\prime \prime}(x)=0$
This worksheet considers the function

$$
g(x)=x^{2} e^{x}
$$

number

1. Find all critical points of $g$.

$$
\begin{aligned}
& \text { Look for } g^{\prime}(x)=0 \text { or DNE } \\
& \begin{aligned}
g^{\prime}(x) & =2 x e^{x}+x^{2} e^{x} \\
& =\left(2 x+x^{2}\right) e^{x} \\
& =x(2+x) e^{x}
\end{aligned}
\end{aligned}
$$



$$
g^{\prime}(x)=\underbrace{x(2(2) x}_{\downarrow} e^{x}
$$

$$
g^{\prime}(x)>0
$$

$$
g^{\prime}(x)<0
$$


3. Use the First Derivative Test to classify each critical point as a local min/local max.

$$
\frac{+1+1+1}{-1} \underbrace{-1}_{\text {local }}
$$





$$
-2-\sqrt{2} \quad-2+\sqrt{2}
$$


6. Use the Second Derivative Test to classify each critical point as a local min/local max (if possible).

7. Determine the value of $g$ at each of its critical points.

$$
\begin{aligned}
& x=0,-2 \\
& g(x)=x^{2} e^{x} \\
& g(0)=0^{2} e^{0}=0 \\
& g(-2)=4 e^{-2} \quad(>0)
\end{aligned}
$$

$$
g(x)=x^{2} e^{x}
$$

8. Use the information determined thesfarto sketetine graph of $g(x)$. You may used the fact, which we will justify next class, that $\lim _{x \rightarrow-\infty} f(x)=0$.

$$
\lim _{x \rightarrow \infty} x^{2} c^{x}=\infty
$$



$$
\begin{aligned}
& \frac{1}{e^{-x}}=e^{x} \\
& \frac{1}{\left(e^{x}\right)^{-1}}=\left(\left(e^{x}\right)^{-1}\right)^{-1}=e^{x}
\end{aligned}
$$



