Vocabulary

Suppose $f(x)$ is a real-valued function with domain D and suppose c is a point in D.

1. $f(c)$ is an absolute maximum value for f if $f(c) \geq f(x)$ for each x in D.
2. $f(c)$ is a (absolute) minimum value for f if $f(c) \leq f(x)$ for each x in D.
3. $f(c)$ is a local maximum value for f if $f(c) \geq f(x)$ for each x in D near c.
4. $f(c)$ is a local minimum value for f if $f(c) \leq f(x)$ for each x in D near c.
5. We say c is a critical point for f if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Key Tools

1. [Fermat's Theorem] If $f(c)$ is a (local or absolute) maximum/minimum value, and if f is defined on both sides of c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
2. [Extreme Value Theorem] If the domain of f is a closed, bounded interval, and if f is continuous, then f is guaranteed to have both a maximum and a minimum value.
3. Sketch the graph of a function with domain $[-3,3]$ that has an absolute maximum of 5 at $x=-2$, an absolute minimum of 0 at $x=2$ and a local minimum of 2 at $x=0$ that is not an absolute minimum.
4. Give an example of a function with domain $(-1,1)$ that does not attain either an absolute minimum or an absolute maximum value. Why doesn't your example violate the Extreme Value Theorem?
5. Sketch a discontinuous function with domain $[-1,1]$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?
6. Give an example of a continuous function with domain $[0, \infty)$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?
7. Consider the function $\sec (x)$. Sketch this function. From the sketch answer the following. Does this function have any absolute maximums? Absolute minimums? Local maximums? Local minimums?
8. Find all critical points of the function $f(x)=\sin (x)^{1 / 3}$.

7. Key Tool: Closed Interval Method

To find a maximum or minimum value for a continuous function defined on an closed, bounded interval $[a, b]$, look in all of the following locations:

1. The end points.
2. The critical points.

Find the absolute maximum and minimum values of $f(x)=x-x^{1 / 3}$ on the interval $[-1,4]$, and the locations where those values are attained.
8. Find the absolute maximum and minimum values of $f(x)=e^{-x^{2}}$ on the interval $[-2,3]$, and the locations where those values are attained.
9. Find the maximum and minimum values of $f(x)=x-x^{1 / 3}$ on the interval $[-1,4]$. Determine where those maximum and minimum values occur.
10. Find the maximum and minimum values of $f(x)=x+\frac{1}{x}$ on the interval $[1 / 5,4]$. Determine where those maximum and minimum values occur.
11. Find the maximum and minimum values of $f(x)=x^{2 / 3}$ on the interval [-8,8]. Determine where those maximum and minimum values occur.
12. A ball thrown in the air at time $t=0$ has a height given by

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g_{0} t^{2}
$$

meters where t is measured in seconds, h_{0} is the height at time $0, v_{0}$ is the velocity (in meters per second) at time 0 and g_{0} is the constant acceleration due to gravity (in $\mathrm{m} / \mathrm{s}^{2}$). Assuming $v_{0}>0$, find the time that the ball attains its maximum height. Then find the maximum hight.

