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Vocabulary

Suppose f (x) is a real-valued function with domain D and suppose c is a point in D.

�. f (c) is an absolute maximum value for f if f (c) ≥ f (x) for each x in D.

�. f (c) is a (absolute) minimum value for f if f (c) ≤ f (x) for each x in D.

�. f (c) is a local maximum value for f if f (c) ≥ f (x) for each x in D near c.

�. f (c) is a local minimum value for f if f (c) ≤ f (x) for each x in D near c.

�. We say c is a critical point for f if either f ′(c) = � or f ′(c) does not exist.
Key Tools

�. [Fermat’s�eorem] If f (c) is a (local or absolute) maximum/minimum value, and if
f is de�ned on both sides of c, and if f ′(c) exists, then f ′(c) = �.

�. [Extreme Value�eorem] If the domain of f is a closed, bounded interval, and if f is
continuous, then f is guaranteed to have both a maximum and a minimum value.

�. Sketch the graph of a function with domain [−�, �] that has an absolute maximum of �
at x = −�, an absolute minimum of � at x = � and a local minimum of � at x = � that is
not an absolute minimum.

�. Give an example of a function with domain (−�, �) that does not attain either an absolute
minimumor an absolutemaximumvalue. Why doesn’t your example violate the Extreme
Value�eorem?
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�. Sketch a discontinuous functionwith domain [−�, �] that attains aminimumbut does not
attain amaximum value. Why doesn’t your example violate the Extreme Value�eorem?

�. Give an example of a continuous function with domain [�,∞) that attains a minimum
but does not attain a maximum value. Why doesn’t your example violate the Extreme
Value�eorem?

�. Consider the function sec(x). Sketch this function. From the sketch answer the fol-
lowing. Does this function have any absolute maximums? Absolute minimums? Local
maximums? Local minimums?
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�. Find all critical points of the function f (x) = sin(x)���.

�. Key Tool: Closed Interval Method

To �nd a maximum or minimum value for a continuous function de�ned on an closed,
bounded interval [a, b], look in all of the following locations:

�. �e end points.

�. �e critical points.

Find the absolute maximum and minimum values of f (x) = x − x��� on the interval[−�, �], and the locations where those values are attained.
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�. Find the absolute maximum and minimum values of f (x) = e−x� on the interval [−�, �],
and the locations where those values are attained.

�. Find the maximum and minimum values of f (x) = x − x��� on the interval [-�,�]. Deter-
mine where those maximum and minimum values occur.

��. Find the maximum and minimum values of f (x) = x + �
x on the interval [�/�,�]. Deter-

mine where those maximum and minimum values occur.
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��. Find themaximumandminimumvalues of f (x) = x��� on the interval [-�,�]. Determine
where those maximum and minimum values occur.

��. A ball thrown in the air at time t = � has a height given by

h(t) = h� + v�t − �
� g�t

�

meters where t is measured in seconds, h� is the height at time �, v� is the velocity (in
meters per second) at time � and g� is the constant acceleration due to gravity (in m/s�).
Assuming v� > �, �nd the time that the ball attains its maximum height. �en �nd the
maximum hight.
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