Vocabulary

Suppose $f(x)$ is a real-valued function with domain D and suppose c is a point in D.

1. $f(c)$ is an absolute maximum value for f if $f(c) \geq f(x)$ for each x in D.
2. $f(c)$ is a (absolute) minimum value for f if $f(c) \leq f(x)$ for each x in D.
3. $f(c)$ is a local maximum value for f if $f(c) \geq f(x)$ for each x in D near c.
4. $f(c)$ is a local minimum value for f if $f(c) \leq f(x)$ for each x in D near c.
5. We say c is a critical point for f if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Key Tools

1. [Fermat's Theorem] If $f(c)$ is a (local or absolute) maximum/minimum value, and if f is defined on both sides of c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
2. [Extreme Value Theorem] If the domain of f is a closed, bounded interval, and if f is continuous, then f is guaranteed to have both a maximum ar /d a minimum value.

$$
\rightarrow[c, b]
$$

1. Sketch the graph of a function with domain $[-3,3]$ that has an absolute maximum of 5 at $x=-2$, an absolute minimum of 0 at $x=2$ and a local minimum of 2 at $x=0$ that is not an absolute minimum.

2. Give an example of a function with domain $(-1,1)$ that does not attain either an absolute minimum or an absolute maximum value. Why doesn't your example violate the Extreme Value Theorem?

$$
f(x)=x
$$

3. Sketch a discontinuous function with domain $[-1,1]$ that attains a minimum but does not attain a maximum value. Why doesn't you/ example violate the Extreme Value Theorem?

4. Give an example of a continuous function with domain $[0, \infty)$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?

5. Consider the function $\sec (x)$. Sketch this function. From the sketch answer the following. Does this function have any absolute maximums? Absolute minimums? Local maximums? Local minimums?
6. Find all critical points of the function $f(x)=\sin (x)^{1 / 3}$.
7. Key Tool: Closed Interval Method

To find a maximum or minimum value for a continuous function defined on an closed, bounded interval $[a, b]$, look in all of the following locations:

1. The end points.
2. The critical points. $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not,

Find the absolute maximum and minimum values of $f(x)=x-x^{1 / 3}$ on the interval $[-1,4]$, and the locations where those values are attained.

$$
\begin{aligned}
& \text { Need to look at } \\
& \text { a) and pouts } \\
& \text { b) critical points } \\
& f^{\prime}(\omega)=0 \text { or } \operatorname{DSNE} \\
& f^{\prime}(x)=1-\frac{1}{3} x^{-2 / 3} \\
& =1-\frac{1}{3}\left(\frac{1}{x}\right)^{2 / 3}
\end{aligned}
$$

$$
\begin{aligned}
x^{-2 / 3} & =3 \\
\left(\left(\frac{1}{x}\right)^{2}\right)^{1 / 3} & =3 \\
\left(\frac{1}{x}\right)^{2} & =3^{3} \\
\frac{1}{x} & = \pm \sqrt{3^{3}}= \pm 3^{3 / 2} \\
x & = \pm 3^{-3 / 2}
\end{aligned}
$$

two critical points where $f^{\prime}(x)=0$

Ore critical point, $x=0$ where $f^{\prime}(4)$ DUE

Thess critical points: $x=0$
Three

$$
\begin{aligned}
& x=0 \\
& x=3^{-3 / 2}=\left(\frac{1}{3}\right)^{3 / 2} \\
& x=-3^{-3 / 2}
\end{aligned}
$$

Two end ports: $-1,4$

$$
\begin{aligned}
& f(0)=0 \quad \\
& f\left(\left(\frac{1}{3}\right)^{3 / 2}\right)=-0.3849 \cdots \\
& f(-1)=-1-(-1)^{1 / 3}=-1+1=0 \\
& f(4)=4-4^{1 / 3}=2.41 \\
& f\left(-\left(\frac{1}{3}\right)^{3 / 2}\right)=+0.3849
\end{aligned}
$$

Marivum of -0.3849 at $x=\left(\frac{1}{3}\right)^{3 / 2}$.
Maximum of 2.41 at $x=4$
8. Find the absolute maximum and minimum values of $f(x)=e^{-x^{2}}$ on the interval $[-2,3]$, and the locations where those values are attained.
9. Find the maximum and minimum values of $f(x)=x-x^{1 / 3}$ on the interval $[-1,4]$. Determine where those maximum and minimum values occur.
10. Find the maximum and minimum values of $f(x)=x+\frac{1}{x}$ on the interval $[1 / 5,4]$. Determine where those maximum and minimum values occur.

$$
\begin{aligned}
& \text { Need to lookat 1) endpoints } \\
& \text { 2) wittol points }
\end{aligned}
$$

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 1-\frac{1}{x^{2}}=0 \\
& \\
& \quad 1=\frac{1}{x^{2}} \quad \begin{array}{l}
x^{2}=1 \\
x= \pm 1
\end{array}
\end{aligned}
$$

No spots where $f^{\prime}(x)$ DNE in $[1 / s, 4]$
One spot where $f^{\prime}(x)=0$ in \cdots.

$$
\begin{array}{ll}
\longrightarrow x=1 \\
\text { Check at } \\
x=\frac{1}{5} \quad f\left(\frac{1}{5}\right)=\frac{1}{5}+5=5.2 \\
x=1 & f(1)=1+\frac{1}{1}=1+1=2 \\
x=4 & f(4)=4+\frac{1}{4}=4.25
\end{array}
$$

11. Find the maximum and minimum values of $f(x)=x^{2 / 3}$ on the interval [-8,8]. Determine where those maximum and minimum values occur.
12. A ball thrown in the air at time $t=0$ has a height given by

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g_{0} t^{2}
$$

meters where t is measured in seconds, h_{0} is the height at time $0, v_{0}$ is the velocity (in meters per second) at time 0 and g_{0} is the constant acceleration due to gravity (in $\mathrm{m} / \mathrm{s}^{2}$). Assuming $v_{0}>0$, find the time that the ball attains its maximum height. Then find the maximum hight.

