1. I'm tired of doing all the work around here. It's your turn. You're going to show that

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Start with the equation $y=\ln (x)$.

1. Solve this equation for x.
2. Take an implicit derivative with respect to x, and solve for $d y / d x$.
3. Now convert $d y / d x$ into an expression that only involves x. (Tah dah!)
4. Compute $\frac{d}{d x} \ln \left(x+e^{3 x}\right)$.
5. Compute $\frac{d}{d x} \ln (\cos (x))$ and simplify your expression.
6. How can we compute $\frac{d}{d x} 5^{x}$?
7. Rewrite $5^{x}=e^{a x}$ for a certain constant a. Your job is to find a !
8. Now compute $\frac{d}{d x} 5^{x}$ by taking the derivative of $e^{a x}$ instead.
9. Rewrite your previous answer so that the letter e does not appear.
10. Derive a formula for $\frac{d}{d x} \log _{5}(x)$. You can either use a change of base formula, or you can repeat the technique used to find the derivative of $\ln (x)$. Heck, do it both ways.
11. Suppose you wish to differentiate

$$
f(x)=x^{x} .
$$

The tool to use is called logarithmic differentiation.
Start with the equation $y=x^{x}$.

1. Apply the natural logarithm to both sides of the equation and simplify.
2. Take an implicit derivative with respect to x, and solve for $d y / d x$.
3. Now convert $d y / d x$ into an expression that only involves x. (Tah dah!)
4. Differentiate $f(x)=x^{\sin (x)}$.
5. We wish, for whatever bizarre reason, to compute $d y / d x$ if

$$
y=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}
$$

One can use the product and quotient rules. But logarithmic differentiation can be a useful tool instead. known as logarithmic differentiation.

1. Take the natural logarithm of both sides of the equation.
2. Use \log rules such as $\ln (A B)=\ln (A)+\ln (B)$ to expand the right-hand side of this equation
3. Compute (implicitly) $d y / d x$ and solve for $d y / d x$.
4. Convert the expression for $d y / d x$ so that it only involves x, and there are no appearances of y.
