1. I'm tired of doing all the work around here. It's your turn. You're going to show that

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Start with the equation $y=\ln (x)$.

1. Solve this equation for x.

$$
y=\underbrace{y}=e^{\ln (x)}=x
$$

2. Take an implicit derivative with respect to x, and solve for $d y / d x$.

$$
\begin{aligned}
e^{y} & =x \\
\frac{d}{d x} e^{y} & =\frac{d}{d x} x
\end{aligned} \longleftrightarrow \begin{array}{r}
e^{y} \cdot y^{\prime}=1 \\
y^{\prime}=\frac{1}{e^{y}}
\end{array}
$$

3. Now convert $d y / d x$ into an expression that only involves x. (Tah dah!)

$$
\begin{aligned}
& \begin{array}{l}
\frac{d y}{d x}=\frac{1}{x} \quad \frac{d}{d x} \ln (x)=\frac{1}{x} \\
\frac{1}{e^{3 x}} \cdot \frac{d}{d x}\left(x+e^{3 x}\right)=\frac{1}{x+e^{3 x}} \cdot\left(1+\frac{d}{d x} e^{3 x}\right)
\end{array} \\
& \text { 3. Compute } \frac{d}{d x} \ln (\cos (x)) \text { and simplify your expression. } \quad=\frac{1}{x+e^{3 x}} \cdot\left(1+3 e^{3 x}\right) \\
& \frac{d}{d x} \ln (\cos (x))=\frac{1}{\cos (x)} \cdot \frac{d}{d x}(\cos (x))=-\frac{\sin (x)}{\cos (x)}=-\tan (x)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{d}{d x} e^{3 x} & =e^{3 x} \cdot \frac{d}{d x}(3 x) & & \text { inside: } 3 x \\
& =3 e^{3 x} & & \text { outside: } e^{x} \\
& =e_{\uparrow}^{i}
\end{array}
$$

4. How can we compute $\frac{d}{d x} 5^{x}$?

$$
\begin{aligned}
& \frac{d}{d x} s^{x}=\frac{d}{d x} e^{\ln 5 x}=\ln (5) e^{\ln (5) x} \\
& \text { 3. Rewrite your previous answer so that the letter } e \text { does not appear. } \\
& \frac{d}{d x} 5^{x}=\ln (5) 5^{x} \\
& e^{\ln (5) x}=5^{x}
\end{aligned}
$$

5. Derive a formula for $\frac{d}{d x} \log _{5}(x)$. You can either use a change of base formula, or you can
repeat the technique used to find the derivative of $\ln (x)$. Heck, do it both ways. repeat the technique used to find the derivative of $\ln (x)$. Heck, do it both ways.

$$
\begin{aligned}
& y=\log _{5}(x)=x \\
& 5^{y}=5^{\log _{5}(x)}=x \quad e^{\ln (x)}=x \\
& 5^{y}=x \\
& \frac{d}{d x}\left(5^{y}\right)=\frac{d}{d x} x \quad \square y^{\prime}=\frac{1}{\ln (5) 5^{y}} \\
& \text { (5) } 5^{y} \cdot y^{\prime}=1 \quad y^{\prime}=\frac{1}{\ln (5) x} \\
& \frac{d}{d x} \log _{5}(x)=\frac{1}{\ln (5) x}
\end{aligned}
$$

6. Suppose you wish to differentiate

$$
f(x)=x^{x} .
$$

The tool to use is called logarithmic differentiation.
Start with the equation $y=x^{x}$. \longrightarrow what $\frac{d y}{d x}, y^{\prime}$

1. Apply the natural logarithm to both sides of the equation and simplify.

$$
\ln (y)=\ln \left(x^{x}\right)=x \ln (x)
$$

2. Take an implicit derivative with respect to x, and solve for $d y / d x$.

$$
\begin{aligned}
& \ln (y)=x \ln (x) \\
& \frac{d}{d x}(\ln (y))=\frac{d}{d x}(x \ln (x))
\end{aligned}<\frac{1}{y} \cdot y^{\prime}=1 \cdot \ln (x)+x \cdot \frac{1}{x} . \quad \begin{aligned}
& y^{\prime}=y(\ln (x)+1)
\end{aligned}
$$

3. Now convert $d y / d x$ into an expression that only involves x. (Tah dah!)

$$
y^{\prime}=x^{x}(\ln (x)+1)
$$

7. Differentiate $f(x)=x^{\sin (x)}$.

$$
\begin{aligned}
y & =x^{\sin (x)} \quad \operatorname{tant} y^{\prime} \\
\ln (y) & =\ln \left(x^{\sin (x)}\right)=\sin (x) \ln (x) \\
\frac{1}{y} y^{\prime} & =\cos (x) \ln (x)+\frac{\sin (x)}{3 x} \Rightarrow y^{\prime}=x^{\sin (x)}\left[\cos (x) \ln (x)+\frac{\sin (x)}{x}\right]
\end{aligned}
$$

8. We wish, for whatever bizarre reason, to compute $d y / d x$ if

$$
y=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}
$$

One can use the product and quotient rules. But logarithmic differentiation can be a useful tool instead. known as logarithmic differentiation.

1. Take the natural logarithm of both sides of the equation.

$$
\ln (y)=\ln \left[\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}\right]
$$

$$
\begin{aligned}
& \frac{d}{d x}(x-1) \\
& \left.=\frac{d}{d x} x-\frac{d}{d x}\right)
\end{aligned}
$$

2. Use \log rules such as $\ln (A B)=\ln (A)+\ln (B)$ to expand the right-hand side of this equation

$$
\begin{aligned}
\ln (y) & =\ln \left(x^{2}+1\right)+\ln \left((x+3)^{1 / 2}\right)-\ln (x-1) \\
& =\ln \left(x^{2}+1\right)+\frac{1}{2} \ln (x+3)-\ln (x-1)
\end{aligned}
$$

3. Compute (implicitly) $d y / d x$ and solve for $d y / d x$.

$$
\frac{1}{y} y_{\uparrow}^{\prime}=\frac{1}{x^{2}+1} \cdot 2 x+\frac{1}{2} \frac{1}{x+3} \cdot 1-\frac{1}{x-1} \cdot 1
$$

4. Convert the expression for $d y / d x$ so that it only involves x, and there are no appearances of y.

$$
\begin{aligned}
y^{\prime} & =y \cdot\left[\frac{2 x}{x^{2}+1}+\frac{1}{2} \frac{1}{x+3}-\frac{1}{x-1}\right] \\
& =\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}:\left[\frac{2 x}{x^{2}+1}+\frac{1}{2} \frac{1}{x+3}-\frac{1}{x-1}\right.
\end{aligned}
$$

