1. Find $d y / d x$ if $y \cos (x)=x^{2}+y^{2}$
2. Show that $(-3 \sqrt{3}, 1)$ lies on the asteroid $x^{2 / 3}+y^{2 / 3}=1$. Then compute $d y / d x$ at that point.
3. Find $d y / d x$ if $y=\arcsin (3 x)$.
4. Find $d y / d x$ if $y=\arctan \left(\sqrt{4-x^{2}}\right)$.
5. A 12 -foot ladder is leaning against a wall. Let x denote the distance of the base of the ladder from the wall, and let θ be the angle between the ladder and the wall. How fast does the angle θ change with respect to x ?
6. I compute that $d \theta / d x \approx 0.1$ when $x=7$. What does this mean in language your parents can understand? Feel free to express your answer in terms of degrees instead of radians.
