1. Find $d y / d x$ if $y \cos (x)=x^{2}+y^{2}$

$$
\begin{gathered}
y^{\prime} \cos (x)-y \sin (x)=2 x+2 y y^{\prime} \\
y^{\prime}[\cos (x)-2 y]=2 x+y \sin (x) \\
y^{\prime}=\frac{2 x+y \sin (x)}{\cos (x)-2 y}
\end{gathered}
$$

$$
(-1,27)
$$

$$
=10
$$

2. Show that $(\mid 3 / \sqrt{3}, \gamma)$ lies on the asteroid $x^{2 / 3}+y^{2 / 3}=\mathbb{N}$. Then compute $d y / d x$ at that point.

$$
\begin{aligned}
& \quad(-1)^{2 / 3}+(27)^{2 / 3}=1+3^{2}=10 \\
& \frac{d}{d x}\left(x^{2 / 3}+y^{2 / 3}\right)=\frac{d}{d x} 10 \quad y^{\prime}=-\frac{x^{-1 / 3}}{y^{-1 / 3}}=-\frac{y^{1 / 3}}{x^{1 / 3}} \\
& \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0 \quad \begin{array}{l}
\text { at }(x, y)=(-1,27) \\
y^{\prime}=-\frac{(27)^{1 / 3}}{(-1)^{1 / 3}}=3
\end{array}
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { Math F251: Section 3.5 Worksheet } & \text { February 22, 2021 } \\
\text { 3. Find } d y / d x \text { if } y=\arcsin (3 x) . & \frac{d}{d x} \operatorname{arcton}(x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x} \operatorname{arcsch}(3 x) & =\frac{1}{\sqrt{1-(3 x)^{2}}} \frac{d}{d x}(3 x) & \frac{d}{d x} \operatorname{arcin}(x)=\frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{3}{\sqrt{1-(3 x)^{2}}}
\end{array}
$$

4. Find $d y / d x$ if $y=\arctan \left(\sqrt{4-x^{2}}\right)$.

$$
\begin{aligned}
\frac{d}{d x} \arctan \left(\sqrt{4-x^{2}}\right) & =\frac{1}{1+4-x^{2}} \cdot \frac{d}{d x} \sqrt{4-x^{2}} \\
& =\frac{1}{5-x^{2}} \cdot \frac{1}{2 \sqrt{4-x^{2}}} \cdot \frac{d}{d x}\left(\frac{\left.1-x^{2}\right)}{\operatorname{Lo-2x}}\right. \\
& =\frac{1}{5-x^{2}} \cdot \frac{-x}{\sqrt{4-x^{2}}}
\end{aligned}
$$

5. A 12 -foot ladder is leaning against a wall. Let x denote the distance of the base of the ladder from the wall, and let θ be the angle between the ladder and the wall. How fast does the angle θ change with respect to x ?

6. I compute that $d \theta / d x \approx 0.1$ when $x=7$. What does this mean in language your parents can understand? Feel free to express your answer in terms of degrees instead of radians.

When the base of the ladder is 7 ft fran the wall, the ouse at the ul chases at rate of
$0.1 \frac{\mathrm{rad}}{\text { foot }}$ as I clunge the distance of the lase of the ladder fran the wall Note: $0.1 \frac{1 \mathrm{rod}}{f_{\text {foot }}}=0.1 \cdot \frac{300}{2 \pi} \frac{\mathrm{deg}}{\text { foot }}$

