1. The volume of a snowball of radius r is $V(r)=(4 / 3) \pi r^{3}$, where r is measured in inches and V is in measured in inches cubed. Explain what $V^{\prime}(2) \approx 50.265$ means in language your parents could understand.
"As the radices of a snowball with 2 inch radar increases the volume of the snowball increases at the rate of $50,265 \frac{\text { indus }^{3}}{\text { inch }}$!

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{d}{d x} \cot (x)=\frac{d}{d x} \frac{\cos (x)}{\sin (x)}
\end{array}=\frac{\left(\frac{d}{d x} \cos (x)\right) \sin (x)-\cos (x) \cdot \frac{d}{d x} \sin (x)}{\sin ^{2}(x)}\right.} \\
&=\frac{-\sin ^{2}(x)-\cos ^{2}(x)}{\sin ^{2}(x)}
\end{aligned} \begin{aligned}
\text { 2. Compute } \frac{d}{d x} \cot (x) & =\frac{-1\left(\sin ^{2}(x)+\cos ^{2}(x)\right)}{\sin ^{2}(x)} \\
& =\frac{-1}{\sin ^{2}(x)} \\
\text { 3. Compute } \frac{d}{d x} \sec (x) & =-\csc ^{2}(x) \\
\frac{d}{d x} \sec (x)=\frac{d}{d x} \frac{1}{\cos (x)} & =\frac{-\frac{d}{d x} \cos ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{\sin (x)}{\cos (x)} \cdot \frac{1}{\cos (x)}=\tan (x) \sec (x)
\end{aligned}
$$

4. Compute the second derivative $\frac{d^{2}}{d x^{2}} e^{x} \cos (x)$

Start with just one derivative:

$$
\begin{aligned}
\frac{d}{d x} e^{x} \cos (x) & =\left(\frac{d}{d x} e^{x}\right) \cos (x)+e^{x} \frac{d}{d x} \cos (x) \\
& =e^{x} \cos (x)-e^{x} \sin (x) \\
& =e^{x}[\cos (x)-\sin (x)]
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} e^{x} \cos (x)= & \frac{d}{d x} e^{x}[\cos (x)-\sin (x)] \\
= & \left(\frac{d}{d x} e^{x}\right)[\cos (x)-\sin (x)] \\
& +e^{x} \frac{d}{d x}[\cos (x)-\sin (x)] \\
= & e^{x}[\cos (x)-\sin (x)]+e^{x}[-\sin (x)-\cos (x)] \\
= & -2 e^{x} \sin (x)
\end{aligned}
$$

5. Find the equation of the tangent line of the graph of $y=\sin (x)$ at $x=\pi / 3$.

$$
\text { Slope: } \quad y^{\prime}(x)=\frac{d}{d x} \sin (x)=\cos (x)
$$

$$
y^{\prime}(\pi / 3)=\cos (\pi / 3)=\frac{1}{2}
$$

$$
y=\frac{\sqrt{3}}{2}+\frac{1}{2}\left(x-\frac{\pi}{3}\right)
$$

6. A 12 foot ladder rests against a wall. Let θ be the angle between the ladder and the wall and let x be the distance from the base of the ladder and the wall.
a. Compute x as a function of θ.

$$
x=12 \sin \theta
$$

b. How fast does x change with respect to θ when $\theta=\pi / 6$? Include units in your answer.

$$
\frac{d x}{d \theta}=\frac{d}{d \theta} 12 \sin \theta=12 \frac{d}{d t} \sin \theta=12 \cdot \cos \theta
$$

$$
\begin{aligned}
\left.\frac{d x}{d \theta}\right|_{\theta=\frac{\pi}{6}}=12 \cos (\pi / 6)=12 \cdot \frac{\sqrt{3}}{2} & =6 \sqrt{3} \\
& \approx 10 \frac{\mathrm{fet}}{\mathrm{radins}}
\end{aligned}
$$

