Linearization
Given a function $f(x)$, its linearization at $x=a$ is the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

For example, if $f(x)=\sqrt{x}$ and $a=4$ then $f(4)=2$ and $f^{\prime}(4)=1 /(2 \sqrt{4})=1 / 4$. So

$$
L(x)=2+\frac{1}{4}(x-4)
$$

The graph of the linearization is just the tangent line to the curve $y=\sqrt{x}$ at $x=4$. So we expect that $L(x)$ is a good approximation for \sqrt{x} for x near 4 . The point is that computing square roots is hard work (even if your calculator makes it look easy) but computing the value of a linear function like L is easy. In fact your calculator is doing a more sophisticated generalization of the linear approximation: stay tuned in Calculus II!

$$
\begin{array}{ll}
\text { Sind the equation it the tasset lie } \\
\text { at } x=4 \quad x=4, y=f(4)=\sqrt{4}=2 \\
& f^{\prime}(4) \\
y-2=\frac{1}{4}(x-4) & f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
y=2+\frac{1}{4}(x-4) & f^{\prime}(4)=\frac{1}{2 \sqrt{5}}=\frac{1}{4}
\end{array}
$$

Math F251: Section 3.10 Worksheet

1. Use the linear approximation of $f(x)=\sqrt{x}$ t $x=4$ to approxmiate $\sqrt{4.1}$ and compare your result to its approximation computed by your calculator.

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& L(x)=\frac{f(a)}{4}+f^{\prime}(a)(x-a) \\
& a=4 \quad f(a)=2 \quad f^{\prime}(a)=\frac{1}{4} \\
& L(x)=2+\frac{1}{4}(x-4)
\end{aligned}
$$

$L(x) \approx f(x)$, $f x$ is $\operatorname{sear} 4$?

$$
\begin{aligned}
& L(4)=2+\frac{1}{4}(4-4)=2=\sqrt{4}=f(4) \\
& L(4.1) \approx f(4.1)=\sqrt{4.1} \\
& L(4.1)=2+\frac{1}{4}(4.1-4)=2+\frac{1}{4} \cdot \frac{1}{10} \\
& \sqrt{4.1}=2.0248 \cdots
\end{aligned}
$$

$29^{\circ} \cdot \frac{2 \pi}{360^{\circ}}=\frac{29}{30} \cdot \frac{\pi}{6}$

$$
f(x)=\cos (x)
$$

want to approximate $f\left(\frac{29}{30} \frac{\pi}{6}\right)$ well use linewization.
we reed: a chance $a \rightarrow \frac{\pi}{6}$

1) a is close to $\frac{29}{30} \frac{\pi}{6}$
2) we can compute $f(a)$ and $f^{\prime}(a)$
to obtain the Inevization

$$
\begin{aligned}
& L(x)=f(a)+f^{\prime}(\alpha)(x-a) \begin{array}{l}
f\left(\frac{\pi}{6}\right)=\cos (\pi / 6)=\frac{\sqrt{3}}{2} \\
f^{\prime}\left(\frac{\pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)=-\frac{1}{2} \\
L(x)=\frac{\sqrt{3}}{2}+\left(-\frac{1}{2}\right)\left(x^{3}-\frac{\pi}{6}\right)
\end{array}
\end{aligned}
$$

Wart: $\cos \left(\frac{29}{30} \frac{\pi}{6}\right)$
Use: $L\left(\frac{24}{30} \frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{1}{2}\left(\frac{29}{30} \frac{\pi}{6}-\frac{\pi}{6}\right)$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2}-\frac{1}{2}\left(-\frac{1}{30} \frac{\pi}{6}\right) \\
& =\frac{\sqrt{3}}{2}=0.866 \cdots \\
& =0.87475 \cdots
\end{aligned}
$$

$0.87461 \ldots$
3. Find the linear approximation of $f(x)=\ln (x)$ at $a=1$ and use it to approxmate $\ln (0.5)$ and $\ln (0.9)$. Compare your approximation with your calculator's. Sketch both the curve $y=\ln (x)$ and $y=L(x)$ and label the points $A=(0.5, \ln (0.5))$ and $B=(0.5, L(0.5)$

$$
\begin{aligned}
& L(x)=f(a)+f^{\prime}(a)(x-a) \\
& \\
& \begin{aligned}
& f(x)=\ln (x) f(a)=\ln (a) \\
& a=1 \\
&=\ln (1)=0 \\
& L(x)=x-1 f^{\prime}(a)=\ln (a)=1 / a \\
& f^{\prime}(1)=\frac{1}{1}=1
\end{aligned} \\
& L(x)=0+1 \cdot(x-1)
\end{aligned}
$$

a)

$$
\begin{aligned}
& \ln (0.5) \approx L(0.5)=L\left(\frac{1}{2}\right)=\frac{1}{2}-1 \\
& \downarrow=\frac{-1}{2}=-0.5 \\
&-0.693
\end{aligned}
$$

b)

$$
\begin{aligned}
& \ln (0.9) \approx L(0.9)=L\left(\frac{9}{10)}\right)=\frac{9}{10}-1 \\
& \downarrow=-\frac{1}{10} \\
&=0.105
\end{aligned}
$$

4. Find the linear approximation of $f(x)=e^{x}$ at $a=0$ and use it to approximate $e^{0.05}$ and e^{1} Compare your approximations with your calculator's.

$$
\begin{aligned}
& L(x)=f(a)+f^{\prime}(a)(x-a) \\
& f(x)=e^{x}, a=0 \Rightarrow f(a)=e^{0}=1 \\
& f^{\prime}(x)=e^{x}, a=0 \Rightarrow f^{\prime}(a)=e^{0}=1 \\
& L(x)=1+1 \cdot(x-0)=1+x \\
& e^{0.05} \approx L(0.05)=1.05 \\
& e^{0.05}=1.05127 \ldots \\
& e^{1} \approx L(1)=1+1=2 \\
& e^{2}=2.718 \ldots . . .
\end{aligned}
$$

Differentials Suppose we have a variable $y=f(x)$. We define its differential to be

$$
d y=f^{\prime}(x) d x
$$

where x and $d x$ are thought of as variables you can control. What's the point? The value of $d y$ is an estimate of how much y changes if we change x into $x+d x$. See the graph:

$$
\text { Hoo nock does } f(x) \text { charge when }
$$

$$
\text { I wiggle } x \text { to } x+d x
$$

$$
\begin{aligned}
& \text { If } h \text { is small } \\
& f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \quad \frac{f(x+h)-f(x)}{\Delta y}: f^{\prime}(x) \cdot h \\
& d x
\end{aligned}
$$

$$
\begin{aligned}
& \Delta y \approx \underbrace{\Delta^{\prime}(x) \cdot d x} \\
& d y=f^{\prime}(x) \cdot d x
\end{aligned}
$$

If $y=f(x)$ and we change x to $x+d x$ then y changes to approximately $y+d y$ where $\quad d y=f^{\prime}(x) d x$
5. A tree is growing and the radius of its trunk in centemeters is $r(t)=2 \sqrt{t}$ where t is measured in years. Use the differential to estimate the change in radius of the tree from 4
years to 4 years ard one month.
years to 4 years ard one month.

$$
\begin{aligned}
& r(t)=2 \sqrt{t} \quad r^{\prime}(t)=2 \cdot \frac{1}{2 \sqrt{t}} \\
& d t=\frac{1}{12} \quad=\frac{1}{\sqrt{t}} \\
& d r=r^{\prime}(t) d t \quad \begin{array}{l}
t=4 \\
d r=\frac{1}{\sqrt{t}} d t \quad d t=1 / 12 \\
d r=\frac{1}{\sqrt{4}} \cdot \frac{1}{12}=\frac{1}{24} \quad 0.0416 \\
\Delta r=0.0414
\end{array}, l
\end{aligned}
$$

$$
\begin{aligned}
V(r) & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d r} & =4 \pi r^{2} \\
\frac{\Delta V}{\Delta r} & \hookrightarrow d V=4 \pi r^{2} d r
\end{aligned}
$$

If the radus is r ad we chanc
as Δr° it to $r+d r$ then the volone approximatly chuses frum V to $V+d V$.
Is a boctter approximation if do is small.
6. A coat of paint of thinkness 0.05 cm is being added to a hemispherical dome of radius 25 m . Estimate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]

Volume of paint?
It's the chase in volume of the hausphoe gown from 25 to $25+d r m$.

$$
V=\frac{1}{2} \frac{4}{3} \pi r^{3}=\frac{2}{3} \pi r^{3}
$$

$$
\begin{array}{r}
0.05 \mathrm{~cm} \\
0.05 \mathrm{~cm}= \\
\frac{0.05}{100} \mathrm{~mm}
\end{array}
$$ $\begin{aligned} d V= & \frac{2}{3} \pi 3 r^{2} \cdot d r \\ r=25 \mathrm{~mm} & \rightarrow \begin{array}{l}2 \pi r^{2} \\ \text { sorffice area }\end{array} \\ d r=\frac{0.05}{100} \mathrm{~m} & \begin{array}{l}\text { of a } \\ \text { hemisphere. }\end{array}\end{aligned}$

$$
\begin{aligned}
d V & =2 \pi r^{2} d r \\
& =2 \pi(25)^{2} \cdot\left(\frac{0.05}{100}\right) \approx 1.96 \mathrm{~m}^{3}
\end{aligned}
$$

7. The radius of a disc is 24 cm with an error of $\pm 0.5 \mathrm{~cm}$. Estimate the error in the area of the disc as an absolute and as a relative error.

$A=\pi r^{2}$
$d A=2 \pi r d r$

$$
\begin{aligned}
d A & =2 \pi 24 \cdot \frac{1}{2} \\
& =75.4 \mathrm{~cm}^{2}
\end{aligned}
$$

eviron in the area is $\pm 75.4 \mathrm{~cm}^{2}$ $\uparrow_{\text {absolute }}$

$$
A=\pi \cdot 24^{2}=1808 \mathrm{~cm}^{2}
$$

