1. We showed that if $f(x)=1 / x$ then $f^{\prime}(x)=-1 / x^{2}$.

Find the equation of the tangent line to the curve $y=1 / x$ at $x=2$ and at $x=4$. Then sketch the graph of $y=1 / x$ and the two tangent lines.

At $x=4, y=\frac{1}{4}, f^{\prime}(4)=\frac{-1}{16}$

2. Given the graph of $f(x)$ below, sketch $f^{\prime}(x)$.

3. Given the graph of $f(x)$ below, sketch $f^{\prime}(x)$.

4. The graph below is $f(x)=\sqrt{x}$. Sketch $f^{\prime}(x)$.

5. From the definition of the derivative, compute $f^{\prime}(x)$ when $f(x)=\sqrt{x}$. Does your result agree with you sketch above?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h 3} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} \\
& =\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

6. Given the graph of $f(x)$ below, sketch $f^{\prime}(x)$.

7. Given the graph of $f(x)$ below, sketch $f^{\prime}(x)$.

$f^{\prime}(x)$

