1. Continuous at $x=a: \lim _{x \rightarrow a} f(x)=f(a)$
2. A continuous function is continuous at each point in its domain.
3. If left and right limits disagree, then a limit does not exist.
4. Intermediate Value Theorem (one version): If a continuous function on $[a, b]$ is positive at a and negative at b, then it is zero somewhere in the middle.
5. Show that there is a number x such that

$$
10^{x}=x^{2} .
$$

2. True or false: taxi fare is a continuous function of distance traveled. Justify your answer. You may assume this generous taxi does not charge for waiting time.
3. Consider the function

$$
f(x)= \begin{cases}\cos (x) & x>0 \\ -x^{2} & x \leq 0\end{cases}
$$

a) Sketch $f(x)$.
b) Compute $\lim _{x \rightarrow 0^{+}} f(x)$.
c) Compute $\lim _{x \rightarrow 0^{-}} f(x)$.
d) Is $f(x)$ continuous at $x=0$? Justify your answer.
4. Consider the function

$$
f(x)=\frac{\tan (3 x)}{x}
$$

a) What is the value of $f(0)$?
b) Using a calculator, estimate $\lim _{x \rightarrow 0} \tan (3 x) / x$. Be sure to put your calculator in radians mode!
c) For what value of a is

$$
g(x)= \begin{cases}\tan (3 x) / x & x \neq 0 \\ a & x=0\end{cases}
$$

continuous at $x=0$?

