1. Continuous at $x=a: \lim _{x \rightarrow a} f(x)=f(a)$
2. A continuous function is continuous at each point in its domain.
3. If left and right limits disagree, then a limit does not exist.
4. Intermediate Value Theorem (one version): If a continuous function on $[a, b]$ is positive at a and negative at b, then it is zero somewhere in the middle.
5. Show that there is a number x such that

$$
\begin{aligned}
& \text { Wort } x \text { with } \frac{10^{x}-x^{2}}{f(x)}=0 \\
& f(0)=10^{1}-0^{2}=1 \\
& f(-1)=10^{-1}-(-1)^{2}=-0.9
\end{aligned}
$$

Sine $f(x)$ is continuous the IVT implies there is on x in $[-1,0]$ with $f(x)=10^{x}-x^{2}$.
2. True or false: taxi fare is a continuous function of distance traveled. Justify your answer. You may assume this generous taxi does not charge for waiting time.

The footion is liscotinuases.
Each the the fore goes up, t does so by a jump.
3. Consider the function

$$
f(x)=\left\{\begin{array}{ll}
\cos (x) & x>0 \\
-x^{2} & x \leq 0
\end{array} \quad x \rightarrow 0 \quad f(x)=f(0)\right.
$$

a) Sketch $f(x)$.

b) Compute $\lim _{x \rightarrow 0^{+}} f(x)$.

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \cos (x)=\cos (0)=1
$$

c) Compute $\lim _{x \rightarrow 0^{-}} f(x)$.

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}-x^{2}=-0^{2}=0
$$

d) Is $f(x)$ continuous at $x=0$? Justify your answer.

$$
\begin{aligned}
& \text { Since } \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x), \lim _{x \rightarrow 0} f(x) \text { does not exist. } \\
& \text { Catinuity reeds } \quad \lim _{x \rightarrow 0} f(x)=f(0) \text { bit dee ant exist. }
\end{aligned}
$$

4. Consider the function

$$
f(x)=\frac{\tan (3 x)}{x}
$$

a) What is the value of $f(0)$?
Not allowed
b) Using a calculator, estimate $\lim _{x \rightarrow 0} \tan (3 x) / x$. Be sure to put your calculator in radians mode!

Let $f(x)=\tan (3 x) / x$	
x	$f(x)$
0.1	$3.09 \ldots$

c) For what value of a is

$$
g(x)= \begin{cases}\tan (3 x) / x & x \neq 0 \\ a & x=0\end{cases}
$$

continuous at $x=0$?

$$
\text { Need } \lim _{x \rightarrow 0} g(x)=g(0) \text {. }
$$

$$
\text { need } a=\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{\operatorname{tm}(3 x)}{x}=\frac{3 \text { So: }}{a=3}
$$

