1. Justify

$$
\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}=4
$$

using the "Limits don't care about one point" rule.
2. Compute

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}
$$

using the "Limits don't care about one point" rule. Hint: Multiply top and bottom by $\sqrt{4+h}+2$ early in the computation.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2} \\
& =\lim _{h \rightarrow 0} \frac{4+h-4}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{4+h}+2)} \\
\operatorname{limits~}_{\operatorname{lon}^{2} t}^{\text {care }} \rightarrow & =\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{\sqrt{4+0}+2}=\frac{1}{4}
\end{aligned}
$$

3. Suppose $f(x)=x\left(1-\frac{1}{x}\right)$
a) Why is 0 not in the domain of $f(x)$?

$$
1 / 0 \text { is not defined }
$$

b) Sketch the graph of $f(x)$.

Since $x\left(1-\frac{1}{x}\right)=x-1$ except at $x=0$

$$
\lim _{x \rightarrow 0} \underbrace{x\left(1-\frac{1}{x}\right)=\lim _{x \rightarrow 0} x-1=-1}_{\text {limits dor } 4 \text { care! }}
$$

