1. Limits are important to cope with $0 / 0$.
2. We see $0 / 0$ when computing instantaneous rates of change.
3. To estimate $\lim _{x \rightarrow a} f(x)$ you can substitute values of x close to a into f.
4. We also use limits to investigate $1 / 0$ expressions, and when the limit exists the answer is typically $\pm \infty$.
5. $1 / 0$ expressions often have different one-sided limits, $+\infty$ on one side and $-\infty$ on the other.
6. Estimate

$$
\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}
$$

to 5 decimal digits.
2. Estimate

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{\cos (x)-1}
$$

to 5 decimal digits.
3. Sketch the graph of

$$
f(x)=\frac{1}{(3-x)^{2}} .
$$

Then determine

$$
\lim _{x \rightarrow 3} f(x) .
$$

4. Determine

$$
\lim _{x \rightarrow 3^{+}} \frac{1}{3-x}
$$

and
$\lim _{x \rightarrow 3^{-}} \frac{1}{3-x}$.
A sketch of the graph might be helpful.
5. Determine the left- and right-hand limits at 0 of $f(x)=x /|x|$.
6. Suppose

$$
g(x)= \begin{cases}x^{2}+1 & x \geq-1 \\ 2-x & x<-1\end{cases}
$$

Sketch the graph. Then determine if $\lim _{x \rightarrow-1} g(x)$ exists. If not, determine if the left- and right-hand limits exist.
7. Determine exactly

$$
\lim _{x \rightarrow 2} \frac{x^{2}-7 x+10}{x-2}
$$

8. Determine

$$
\lim _{x \rightarrow 0^{+}} 10^{-\frac{1}{x}}
$$

and

$$
\lim _{x \rightarrow 0^{-}} 10^{-\frac{1}{x}}
$$

