1. You start with a 100 g lump of a radioactive isotope. A year later the lump has a mass of 97.7 g . What is the half life of the isotope?

See next pase.
2. At time $t=0$ minutes, a colony of E. coli has 10000 cells. The population is growing exponentially, and after 60 minutes it has 90000 members. Find a function of the form

$$
p(t)=C 10^{a t}
$$

that describes the population size.

3. The function $f(x)=2^{-3 x}$ can be written in the form $f(x)=10^{-a x}$ for a certain constant a. Determine the value of a.

$$
\begin{aligned}
2^{-3 x} & =10^{-a x} \\
-3 x \ln (2) & =-a x \ln (10) \\
a & =\frac{3 \ln (2)}{\ln (10)}
\end{aligned}
$$

1) $m(t)=c \cdot\left(\frac{1}{2}\right)^{a t}$, half-life: $1 / a$

$$
\begin{aligned}
m(0) & =100 ; m(0)=C \cdot 1=C \Rightarrow C=100 \\
m(1) & =97.7 ; m(1)=100\left(\frac{1}{2}\right)^{a} \\
& \Rightarrow 100\left(\frac{1}{2}\right)^{a}=97.7 \\
& \Rightarrow\left(\frac{1}{2}\right)^{a}=0.977 \\
& \Rightarrow a \log _{10}\left(\frac{1}{2}\right)=0.977 \\
& \Rightarrow \quad \frac{1}{a}=\frac{\log _{10}(1 / 2)}{0.977} \approx 29.78 \text { years }
\end{aligned}
$$

2)

$$
\left.\begin{array}{l}
P(t)=C \cdot 10^{a t} \\
P(0)=10000 \\
P(60)=90000
\end{array}\right] \text { given }
$$

but $P(0)=C \cdot 10^{a .0}=C \Rightarrow C=10000$
$A_{s 0}, P(60)=1000010^{a .60}$
So

$$
\begin{aligned}
1000010^{a 60} & =90000 \\
10^{a \cdot 60} & =9 \\
a \cdot 60 & =\log _{10} 9 \\
a & =\frac{\log _{10} 9}{60} \approx 0.0159
\end{aligned}
$$

4. Use the change of base formula to rewrite $\log _{10}(7)$ in terms of the natural logarithm, \ln.
5. Solve the following equation for x :

$$
\ln (x(x-1))=2
$$

$$
x(x-1)=e^{2}
$$

6. Find the inverse function of $f(x)=1+\sqrt{2-3 x}$. Remember:
a) Write $y=f(x)$.
b) Solve for x.
c) The resulting expression in terms of y is $f^{-1}(y)$.

$$
\left.\begin{array}{l}
y=1+\sqrt{2-3 x} \\
y-1=\sqrt{2-3 x} \\
(y-1)^{2}=2-3 x \\
3 x=2-(y-1)^{2}
\end{array} \quad\right\} x=\frac{2-(y-1)^{2}}{3}
$$

$$
\begin{aligned}
& \log _{10} 7=\frac{\ln (7)}{\ln (10)} \\
& \ln (x)+\ln (x-1)=2 . \\
& x^{2}-x-e^{2}=0 \int \text { cm only keep } \frac{1+\sqrt{1+4 e^{2}}}{2} \\
& \text { sure the other is negative and illegal for } 2
\end{aligned}
$$

