a. A generic graph y = f(x) is shown and a first approximation x_1 is indicated. Show, by adding to the sketch, how Newton's method would find the next approximation x_2 .

For the equation $x^3 - 4x + 2 = 0$ and the value $x_1 = -2$, compute x_2 from Newton's method. b.

 $d G(e^{\perp})$

12. (Extra Credit: 5 points)

Find **and simplify** the derivative of the function:

$$h(x) = \int_{1}^{e^{x}} \ln t \, dt$$

$$G(\chi) = \int_{1}^{\chi} \ln(\xi) \, d\xi$$

$$10 \quad G(e^{\chi})$$

x

The height of a right circular cylinder is increasing at rate of 3 meters per second while its volume remains constant. (See figure below.) At what rate is the radius changing when the radius and height are both 10 meters?

1. (10 points)

Find an equation of the tangent line to the curve at x = e: $y = x^2 \ln x$

2. (10 points)

The graph of the function $f(x) = \sqrt{x^2 + 3}$ is shown.

a. On the graph sketch 3 rectangles, using left endpoints, that would be used to approximate

$$\int_1^4 \sqrt{x^2 + 3} \, dx.$$

b. Compute the approximation in part (a). You do not need to simplify, but your answer should be in a form where a calculator would compute a numerical value.

Sketch a graph H(x) with all of the properties below. Label your graph.

- The domain of H(x) is $(-\infty, 3) \cup (3, \infty)$.
- H(0) = 1
- $\lim_{x \to 0^-} H(x) = 2$
- $\lim_{x \to 0^+} H(x) = 0$
- $\lim_{x \to 3} H(x) = \infty$
- H'(x) < 0 and H''(x) < 0 on the interval $(-\infty, 0)$
- *H* has an inflection point when x = 5

Find any horizontal or vertical asymptotes for the function $f(x) = \frac{2x^2-3x}{5x^2-10}$. Use limits to justify your answer(s). If no asymptote exists, explain why.

6. (10 points)

A homeowner wants to minimize the cost of heating a building over the next 10 years. Adding x inches of insulation in the attic costs \$100 per inch and results in heating costs of 1000/(2 + x) dollars over 1 year. How many inches of insulation should be installed in order the minimize the total costs over a 10 year period? Justify your answer. (By **total costs**, we mean both the initial cost of insulating the building plus the annual heating costs.)

Short Answer

a. A population of chickadees is increasing at a rate of r(t) chickadees per year. What does $\int_{1}^{4} r(t) dt = 400$ mean? Make sure to include units in your answer.

b. Let y = -3 + 5(x - 4) be an equation of the tangent line to the graph of f(x) at x = 4. Is it possible to determine f(4) or f'(4)? Explain your answer.

c. Let C(T) be the number of chirps per second of a male cricket as a function of temperature, *T*, in degrees Fahrenheit. In the context of the problem, interpret C'(70) = 2. Make sure to include units in your answer.

7. (15 points)

A particle moves so that its velocity (in m/sec) at time *t* sec is

$$v(t) = t^2 + 7.$$

a. What is the average rate of change of the velocity from time t = 2 to t = 3? Simplify, and give units.

b. Using the limit definition of the derivative, compute v'(2). (No credit will be given for using a different method to compute the derivative.)

9. (15 points)

Consider the following function:

$$f(x) = \frac{x}{x^2 - 1}$$

- **a.** What is the domain of *f*?
- **b.** Find all critical numbers of f, if any.

c. Determine the intervals on which f is increasing or decreasing.

d. Find all asymptotes of f, both vertical and horizontal. (Identify each asymptote as either vertical or horizontal.)

10. (10 points)

A farmer has 400 meters of fencing and wants to fence off a rectangular field that borders a straight river. No fencing is needed along the river, which forms one side of the rectangle. What are the dimensions of the field that has the largest area?

a. Draw a sketch and choose labels for the sides.

b. Solve the problem. Indicate units in your answer.

11. (10 points)

The graph of the function $f(x) = x^2 - \ln(3x)$ is shown.

a. Suppose Newton's method is used to find an approximate solution to f(x) = 0 from an initial guess of $x_1 = 2$. Sketch on the graph how the next approximation x_2 will be found, labeling its location on the x-axis.

b. For $x_1 = 2$, give a formula for x_2 . You do not need to simplify, but your answer should be in a form where a calculator would compute a numerical value.

c. What value of x_1 might you use if you wanted to find the **smaller** solution of f(x) = 0?

Extra Credit. (3 points)

Compute the following integral by interpreting it as an area:

$$\int_0^4 \sqrt{4 - (x - 2)^2} \, dx$$