11. (10 points)

a. A generic graph $y=f(x)$ is shown and a first approximation x_{1} is indicated. Show, by adding to the sketch, how Newton's method would find the next approximation x_{2}.

b. For the equation $x^{3}-4 x+2=0$ and the value $x_{1}=-2$, compute x_{2} from Newton's method.

12. (Extra Credit: 5 points)

$$
\frac{d}{d x} G\left(e^{x}\right)
$$

Find and simplify the derivative of the function:

$$
h(x)=\int_{1}^{e^{x}} \ln t d t
$$

Explain your steps.

$$
G(x)=\int_{1}^{x} \ln (t) d t
$$

4. (10 points)

The height of a right circular cylinder is increasing at rate of 3 meters per second while its volume remains constant. (See figure below.) At what rate is the radius changing when the radius and height are both 10 meters?

Math 251: Final Exam

1. (10 points)

Find an equation of the tangent line to the curve at $x=e: \quad y=x^{2} \ln x$

2. (10 points)

The graph of the function $f(x)=\sqrt{x^{2}+3}$ is shown.
a. On the graph sketch 3 rectangles, using left endpoints, that would be used to approximate

$$
\int_{1}^{4} \sqrt{x^{2}+3} d x
$$

b. Compute the approximation in part (a). You do not need to simplify, but your answer should be in a form where a calculator would compute a numerical value.

1. (10 points)

Sketch a graph $H(x)$ with all of the properties below. Label your graph.

- The domain of $H(x)$ is $(-\infty, 3) \cup(3, \infty)$.
- $H(0)=1$
- $\lim _{x \rightarrow 0^{-}} H(x)=2$
- $\lim _{x \rightarrow 0^{+}} H(x)=0$
- $\lim _{x \rightarrow 3} H(x)=\infty$
- $H^{\prime}(x)<0$ and $H^{\prime \prime}(x)<0$ on the interval $(-\infty, 0)$
- H has an inflection point when $x=5$

5. (10 points)

Find any horizontal or vertical asymptotes for the function $f(x)=\frac{2 x^{2}-3 x}{5 x^{2}-10}$. Use limits to justify your answer(s). If no asymptote exists, explain why.

6. (10 points)

A homeowner wants to minimize the cost of heating a building over the next 10 years. Adding x inches of insulation in the attic costs $\$ 100$ per inch and results in heating costs of 1000/(2+x) dollars over 1 year. How many inches of insulation should be installed in order the minimize the total costs over a 10 year period? Justify your answer. (By total costs, we mean both the initial cost of insulating the building plus the annual heating costs.)
9. (10 points)

Short Answer
a. A population of chickadees is increasing at a rate of $r(t)$ chickadees per year. What does $\int_{1}^{4} r(t) d t=400$ mean? Make sure to include units in your answer.
b. Let $y=-3+5(x-4)$ be an equation of the tangent line to the graph of $f(x)$ at $x=4$. Is it possible to determine $f(4)$ or $f^{\prime}(4)$? Explain your answer.
c. Let $C(T)$ be the number of chirps per second of a male cricket as a function of temperature, T, in degrees Fahrenheit. In the context of the problem, interpret $C^{\prime}(70)=2$. Make sure to include units in your answer.

Math 251: Final Exam

7. (15 points)

A particle moves so that its velocity (in $\mathrm{m} / \mathrm{sec}$) at time $t \mathrm{sec}$ is

$$
v(t)=t^{2}+7
$$

a. What is the average rate of change of the velocity from time $t=2$ to $t=3$? Simplify, and give units.
b. Using the limit definition of the derivative, compute $v^{\prime}(2)$. (No credit will be given for using a different method to compute the derivative.)

Math 251: Final Exam

9. (15 points)

Consider the following function:

$$
f(x)=\frac{x}{x^{2}-1}
$$

a. What is the domain of f ?
b. Find all critical numbers of f, if any.
c. Determine the intervals on which f is increasing or decreasing.
d. Find all asymptotes of f, both vertical and horizontal. (Identify each asymptote as either vertical or horizontal.)
e. Sketch the graph on the axes:

10. (10 points)

A farmer has 400 meters of fencing and wants to fence off a rectangular field that borders a straight river. No fencing is needed along the river, which forms one side of the rectangle. What are the dimensions of the field that has the largest area?
a. Draw a sketch and choose labels for the sides.
b. Solve the problem. Indicate units in your answer.

Math 251: Final Exam

11. (10 points)

The graph of the function $f(x)=x^{2}-\ln (3 x)$ is shown.
a. Suppose Newton's method is used to find an approximate solution to $f(x)=0$ from an initial guess of $x_{1}=2$. Sketch on the graph how the next approximation x_{2} will be found, labeling its location on the x-axis.

b. For $x_{1}=2$, give a formula for x_{2}. You do not need to simplify, but your answer should be in a form where a calculator would compute a numerical value.
c. What value of x_{1} might you use if you wanted to find the smaller solution of $f(x)=0$?

Extra Credit. (3 points)

Compute the following integral by interpreting it as an area:

$$
\int_{0}^{4} \sqrt{4-(x-2)^{2}} d x
$$

