Antiderivatives

Given a rate of clause,
can you construct the original forction?

I sine you the rate at which water is drains fran a task. Con you recorstrat the amount of water in the tank?

Def: An antiderivative of a function
$f(x)$ is a function $F(x)$ such that $F^{\prime}(x)=f(x)$.

Find as antiderivative of $f(x)=0$

$$
\begin{aligned}
& F^{\prime}(x)=\underset{f(x)}{0} \text { (everyuhere) } \\
& F(x)=1 \quad \text { (everblhee) } \\
& F(x)=\sqrt{\pi} \text { (everyuhere) }
\end{aligned}
$$

$$
F(x)=C \text { for amy constant } C
$$

Are thee any other 5
If $F(x)$ is defined on an interval and $F^{\prime}(x)=0$ (every whee) then $F(t)$ is constant.

Follows from Meir Value Thesem.
e.g. Find an antidervative of x^{2} ?

Wart $F(x)$ with $F^{\prime}(x)=x^{2}$.

$$
\begin{aligned}
& F(x)=\frac{1}{3} x^{3} \\
& F^{\prime}(x)=\frac{1}{3} 3 x^{2}=x^{2}
\end{aligned}
$$

Or,

$$
\begin{aligned}
& F(x)=\frac{1}{3} x^{3}+9 \\
& F^{\prime}(x)=\frac{1}{3} x^{3}+0=\frac{1}{3} x^{3}
\end{aligned}
$$

Or, $F(x)=\frac{1}{3} x^{3}+C$ for am constant C.

If $\quad G(x)$ satisfies $G^{\prime}(x)=x^{2}$
then $\frac{d}{d x}\left[G(x)-\frac{x^{3}}{3}\right]=x^{2}-x^{2}=0$

$$
G(x)-\frac{x^{3}}{3}=C
$$

$$
G(x)=\frac{x^{3}}{3}+C
$$

(so lois as $G(x)$ is defied on an interval).
e.g Find all antideriaties of $\sin (x)$.

$$
\begin{aligned}
& F(x)=-\cos (x) \\
& F^{\prime}(x)=-\frac{d}{d x} \cos (x)=-(-\sin (x))=\sin (x)
\end{aligned}
$$

$$
F(x)=-\cos (x)+C
$$

\longrightarrow all antiderivatives
e.9. Find (on) antiderivative of
all

$$
\begin{aligned}
& \underbrace{x^{2}}+\underbrace{\sin (x)}_{2} \\
& \frac{\underbrace{3}}{3}+C_{1} \\
& F(x)=\frac{1}{3} x^{3}-\cos (x)+C_{2} \cos (x)+C_{1}+7 C_{2}
\end{aligned}
$$

Find an antiderivative of $-5 O e^{-t}$

$$
F(t)=50 e^{-t}
$$

Water is draining fran a tack at a rate of $50 e^{-t}$ liters per minute. What is the volume of water in the tank at time E?
$V(t) \rightarrow$ volume of water in tai at time 6 (liter).

$$
V^{\prime}(t)=-50 e^{-t}
$$

$V(t)$ is an antiderivatice of $-50 e^{-t}$

$$
\begin{aligned}
V(t) & =50 e^{-t}+C \\
V^{\prime}(t) & =50(-1) e^{-t}+0 \\
& =-50 e^{-t}
\end{aligned}
$$

If we knav $V(0)=300 l$
we car reconstruct $\forall(t)$ for all f.

$$
\begin{aligned}
& V(t)=50 e^{-t}+C \\
& V(0)=300 \\
& \rightarrow V(0)=50 e^{-0}+C=50+C \\
& 50+C=300 \\
& C=250
\end{aligned}
$$

$$
\begin{aligned}
V(t) & \left.=50 e^{-t}+250\right)(l) \\
V(0) & =300 \\
\lim _{t \rightarrow \infty} V(t) & =\lim _{t \rightarrow \infty}\left(50 e^{-t}+250\right) \\
& =50 \cdot 0+250 \\
& =250(l)
\end{aligned}
$$

Eventually, the tak contairs 250 l .

