Applied Optimization
Lack us to maximize or minuarze a quentaly of interest $Q(x)$

Tools

1) Closed Interval Method
$Q(x)$ is defined on $[a, b]$

To maximize $Q(x)$

1) Sind the critical points:

$$
\begin{aligned}
Q^{\prime}(x) & =0 \\
& \text { or } D N E
\end{aligned}
$$

2) Look at : a) ouit points
b) end points
2) Concavity methad
$Q(x)$ is defined on an interval and has just one critical point

$Q^{\prime \prime}$ s derivative is negative

$$
\left.\begin{array}{l}
Q^{\prime}(c)=0 \\
Q^{\prime \prime}(x)<0 \text { everulare }
\end{array}\right] \Rightarrow \begin{gathered}
\text { absolule } \\
\text { matx } \\
\\
c
\end{gathered}
$$

$$
\left.\begin{array}{l}
Q^{\prime}(c)=0 \\
Q^{\prime \prime}(x)>0 \text { everubre }
\end{array}\right] \Rightarrow \begin{aligned}
& \text { abs } \\
& \begin{array}{l}
\text { minimas } \\
\text { at } c
\end{array}
\end{aligned}
$$

Example:
Suppose a con has fixed volume V.
What dinerious of the con minimize the surface area?

$$
\rightarrow \text { material costs }
$$

1) Rend the problem.
2) Draw a picture and label.

3) Introduce the quantidy Q to optanize and write it in temms of other vaviubles.
top surtace wea: πr^{2}
botlam sorf acea: πr^{2} wall surf wrea: $2 \pi n h$

$$
A=2 \pi r^{2}+2 \pi r h
$$

4) Use relations to reduce the number of independent variables down to uustore.

We'lluse U.
$10 n^{3}$

$$
V=h \pi r^{2} h=\frac{V}{\pi r^{2}}
$$

$$
\begin{aligned}
A & =2 \pi r^{2}+2 \pi r \frac{V}{\pi r^{2}} \\
& =2 \pi r^{2}+\frac{2 V}{r}
\end{aligned}
$$

$$
A=2 \pi r^{2}+\frac{2 V}{r}<\operatorname{minnamze~this~}_{\text {for all } r>0}
$$

5) Apply calculus look for $\frac{d t}{d r}=0$

$$
\begin{aligned}
& \frac{d A}{d r}=4 \pi r-\frac{2 V}{r^{2}}=0 \\
& 4+r=\frac{2 V}{r^{2}} \\
& 4 \pi r^{3}=2 V \\
& r^{3}=\frac{V}{2 \pi} \\
& r=\left(\frac{V}{2 \pi}\right)^{1 / 3} \\
& G \text { just one crit point! ! }
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d A}{d r}=4 \pi r-\frac{2 V}{r^{2}} & A^{\prime \prime}>0 \text { evermuler } \\
A^{\prime} & A^{\prime \prime}<0 \text { eamquhere } \\
A^{\prime \prime}=4 \pi+\frac{4 V}{r^{3}} & r>0
\end{array}
$$

>0 for all $r>0$

Concare up ebeywhere!

Final answer:
dimensions

$$
h=\frac{V}{\pi r^{2}}
$$

$$
\begin{aligned}
r & =\left(\frac{V}{2 \pi}\right)^{1 / 3} \\
h & =\frac{V}{\pi} r^{-2} \\
& =\frac{V}{\pi}\left(\frac{V}{2 \pi}\right)^{-2 / 3} \\
& =\frac{V}{\pi}\left(\frac{2 \pi}{V}\right)^{2 / 3} \\
& =V^{1 / 3} \pi^{-1}(2 \pi)^{2 / 3}
\end{aligned}
$$

