Optimization

At these points $f^{\prime}(x)=0$

This has neither an abos max nor an alos nin.

- $f(x)$, continuaus
- domain: closed bouded intaval

$$
[a, b] \quad(-\infty, \infty)
$$

Sach functions are guarunteed to huve
an absolute min / max.
These will occur at ore of
a) a critical number
b) an endpoint

$$
\text { e.g. } \quad \begin{aligned}
f(x) & =x e^{-x} \text { on }[0,3] \\
f^{\prime}(x) & =1 \cdot e^{-x}+x \frac{d}{d x} e^{-x} \\
& =e^{-x}+x(-1) e^{-x}
\end{aligned}
$$

$$
f^{\prime}(1)=0
$$

个critical mumber only me.

$$
\begin{aligned}
e^{-x}(1-x) & =0 \\
1-x & =0 \\
1 & =x
\end{aligned}
$$

$x \quad f(x)$

$$
f(x)=x e^{-x}
$$

$0 \quad 0$ abs min at $x=0$
$1 \quad 1 \cdot e^{-1} \approx 0.36$ abs max at $y=1$
$3 \quad 3 e^{-3} \approx 0.14$

$$
\frac{d}{d x} 7=0
$$

If a function is defined on on interval and if $f^{\prime}(x)=0$ on its domain, then it is constant

If $f(x)$ is defined on an interval and if $f^{\prime}(x)>0$ at all pouts on the interval then

\rightarrow the function is strictly increasug

$$
\left(f \quad x_{1}<x_{2} \text { then } f\left(x_{1}\right)<f\left(x_{2}\right)\right)
$$

$f^{\prime}(x)<0$ on an interval?

\rightarrow stactly deareasing $x_{1} c_{1} x_{2}$ implies

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

All tHese facts cone from Men Value
Theorem.

$$
f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7
$$

$$
f^{\prime}(x)=2 x^{2}+2 x-12
$$

$$
\begin{aligned}
& =2\left(x^{2}+x-6\right) \\
& =2(x+3)(x-2)
\end{aligned}
$$

$x+3$

incrausies on $(-\infty,-3)$ and on $(2, \infty)$ decreasing on $(-3,2)$

First Derinative Test
$f(x)$, defincel on an intecial araid $x=c$

$$
f^{\prime}(c)=0
$$

If $f^{\prime}(x)$ incrocoses f un nes to pos as x increcoses thray $x=c, f(x)$ hus a local min at $x=c$.

If $f^{\prime}(x)$ decreases fan positive to negative as x Mareugos through $x=c, f(x)$ hus a local mus at $x=c$

If $f^{\prime}(x)$ his the same sign on both sides of $x=c$ (goth pos or both neg)

Then $f(x)$ has neither a local nun so r a local may at $x=c$.

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(x)=3 x^{2} \quad f^{\prime}(0)=0 \\
& +\left.\quad\right|_{0}+
\end{aligned}
$$

