Optimization
look wy for "the best"
C the biggest the least

Suppose $f(x)$ is a function with domain \mathbb{R}. If c is a point in \mathbb{R} and if $f(c) \geqslant f(x)$ for
all x in \mathbb{R} we say $f(x)$ attains
a maximin at c and we call $f(c)$
the n maximum value of $f(x)$ absolute

f attains a maximum value at $x=0$
$f(0)=1 \longleftarrow$ the max ism value of $f(x)$,

Does this function have an absolute maximum value? $f(0) \geqslant f(x)$ for all x ?

It attains its max value at every point.

For minimums, we say $f(x)$ attains on absolute (global) minimum at $x=c$ if $f(c) \leqslant f(x)$ for all x.

We call $f(6)$ the miniman value of $f(x)$.

Are there functions with domain \mathbb{R} that do not attain either a minimum on a maximum value?

$$
f(x)=x^{3}
$$

e^{x} does not acheive ans absolute win on max.

$f(x)=\cos (x)$ This attains a $L_{m a x i m u n}^{a b s}$ value at $x=0,2 \pi, 4 \pi, 6 \pi /$
It attains an obs, minumain value at $x=\pi, 3 \pi, 5 \pi,-\pi, \ldots$

Fact: If the donuin of $f(x)$ contains an interval aroid c and if f attacks an absolute maximin or uninimum at $x=c$ and of $f^{\prime}(c)$ exists then

$$
f^{\prime}(c)=0
$$

$$
f(x)=x \text { on }[-1,1]
$$

