Derivatives \& hates of Change

Ball height $y(t)=15 t-5 t^{2} \quad t$ in s

$$
\begin{aligned}
& y(1)=10 \mathrm{~m} \\
& y(0)=0 \mathrm{~m}
\end{aligned}\left[\begin{array}{l}
\text { chase in hersht fan } \\
t=0 \text { to } t=1 ? \\
\Delta y=10 \mathrm{~m}
\end{array}\right.
$$

Aveage nate of cluge of hersht fum $t=0$ to $t=1$?

Clunse in time fuss $t=0$ to $t=1$?
$\Delta t=1 \mathrm{~s}$

$$
\frac{\Delta_{y}}{\Delta t}=\frac{10 \mathrm{~m}}{1 \mathrm{~s}}=10 \mathrm{~m} / \mathrm{s}
$$

What is the slope of line joining
$(0,0)$ to $(1,10)$

$$
\frac{\Delta_{y}}{\Delta_{t}}=\frac{10-0}{1-0}=10
$$

Avenge chase in height over $[1,2]$

$$
\frac{\Delta y}{\Delta t} \frac{y(2)-y(1)}{2-1}=\frac{10-10}{1}=\frac{0}{1}=0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Avenge chase in height over $[2,3]$

$$
\frac{\Delta_{y}}{\Delta_{t}}=\frac{y(3)-y(2)}{3-2}=\frac{0-10}{3-2}=\frac{-10}{1}=-\frac{10 \mathrm{~m}}{\mathrm{~s}}
$$

Avg rate of clause of height over $[1,1+h]$

$$
\begin{aligned}
& \Delta y=y(1+h)-y(1) \quad y(t)=15 t-5 t^{2} \\
& \Delta t=1+h-1=h \\
& y(1)=10 \\
& y(1+h)=15(1+h)-5(1+h)^{2} \\
& \\
& =15+15 h-5\left(1+2 h+h^{2}\right) \\
& \\
& =10+5 h-5 h^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta y=y(1+h)-y(1)=5 h-5 h^{2} \\
& \Delta t=h
\end{aligned}
$$

h : lensth of time

$$
\begin{aligned}
& \frac{\Delta y}{\Delta t}=\frac{5 h-5 h^{2}}{h} \quad h=1 \quad \frac{\Delta y}{\Delta t}=0 \\
& \lim _{h \rightarrow 0} \frac{5 h-5 h^{2}}{h}=\lim _{h \rightarrow 0} 5-5 h=5-5 \cdot 0 \\
& h^{2}=5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Given a time a in the interval

Two interpretations 1) instaterems vale of chase of y writ. t at $t=a$
2) slope of tangent line to graph at $t=a$.

Alternative form:

$$
\begin{aligned}
& \frac{\Delta y}{\Delta t} \frac{y(b)-y(a)}{b-a} \text { cus. note of } \\
& \text { chuse oven } \\
& {[a, b]}
\end{aligned} \quad \begin{aligned}
& {[a, a+h]} \\
& \lim _{b \rightarrow a} \frac{y(b)-y(a)}{b-a} \\
& \uparrow \\
& \lim _{h \rightarrow 0} \frac{y(a+h)-y(a)}{h}
\end{aligned}
$$

What is the equation of tangent line. at $t=1$?

$$
y=m x+b
$$

Point slope $\left(x_{0}, y_{0}\right)$ point m slope

$$
\begin{array}{ll}
y-y_{0}=m\left(x-x_{0}\right) & \\
y=y_{0}+m\left(x-x_{0}\right) & \left(t_{0, y_{0}}\right)=(1,10) \\
y=y_{0}+m\left(t-t_{0}\right) \quad u_{n}=5 \\
y=10+5(t-1)<e^{\text {eq of }} \text { tangent line. }
\end{array}
$$

