Why limits? $\frac{0}{0}, \frac{0}{1}=0, \frac{1}{0}$

$$
\frac{\Delta x}{\Delta t} \rightarrow \frac{0}{0}
$$

Continuity (2.5)
\longrightarrow Direct Subs Property.

$$
\lim _{x \rightarrow 3} x^{2}-2 x+1=3^{2}-23+1=4
$$

Afunction $f(\alpha)$ is continuars at some a
in its domain il

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

A function is continuars if it is continuous at each point in its domain

Not conturuaus: discontinuous.
What does dis continuity lack like?
speed

$$
\begin{aligned}
\lim _{x \rightarrow 0} H(x)= & H(0) ? \\
& (H(0)=1
\end{aligned}
$$

But $\lim _{x \rightarrow 0} H(x)$ does not exist.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} H(x)=\lim _{x \rightarrow 0^{-}} 0=0 \\
& \lim _{x \rightarrow 0^{+}} H(x)=\lim _{x \rightarrow 0^{+}} 1=1
\end{aligned}
$$

If left and roght limits disagree, than limit does nat exist.

$$
f(x)=\frac{\sin (x)}{x}
$$

$$
g(x)=\left\{\begin{array}{cl}
\frac{\sin (x)}{x} & x \neq 0 \\
2 & x=0
\end{array}\right.
$$

Is $g(x)$ continuous at $x=0$?

$$
\begin{aligned}
& \lim _{x \rightarrow 0} g(x)=g(0) ? \\
& \longrightarrow 2
\end{aligned}
$$ not continuous

The trig fouctions $\sin (x), \cos (x)$ are continuoes.

Wht abeat $\tan (x)=\frac{\sin (x)}{\cos (x)}$

Followis fuctions are cto: polyls rational (on thedr domains)
$\sin \left(x^{2}+3\right)$ at composition of continuous functions is continuous.

$$
t,-, *
$$

Is there a number x with $\left(x^{2}=2\right)$?

$$
\begin{array}{ll}
f(x)=x^{2}-2 & \sqrt{2} \cdot \sqrt{2}=2 \\
f(\sqrt{2})=(\sqrt{2})^{2}-2=2-2=0
\end{array}
$$

$$
\begin{array}{ll}
f(0)=-2 & f(2)=2 \\
f(1)=-1 &
\end{array}
$$

If $f(1)<0$ and $f(2)>0$ thee should be a spot x between 1 and Z where $f(x)=0$

Intermediate Value Theorem
If $f(x)$ is continuous on $[a, b]$ and it y is a number between $f(a)$ and $f(b)$ than there exists x in $[a, b]$ where

$$
f(x)=y .
$$

