Linits: $\frac{0}{0}$
\rightarrow leads to "holes" is grapks

$$
\begin{aligned}
& \rightarrow \rightarrow \begin{array}{c}
\text { avene rate of } \\
\text { chase }
\end{array} \rightarrow \begin{array}{c}
\text { installuews } \\
\text { ate of chasc } \\
\\
\downarrow
\end{array} \\
& \begin{array}{l}
\Delta x=0 \\
\frac{\Delta x}{\Delta t}
\end{array} \\
& \Delta t=0
\end{aligned}
$$

$$
Q \begin{aligned}
\frac{1}{0} & \rightarrow \text { limits help Le too } \\
\lim _{x \rightarrow 3^{+}} & \frac{1-x}{3-x}=\frac{-2}{\downarrow}=+00 \\
3-3.1 & \frac{-2}{0^{-}}=1
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{1-x}{3-x} \\
& \lim _{x \rightarrow 3^{+}} f(x)=+\infty
\end{aligned}
$$

Rules for workers with limits:

$$
\lim _{x \rightarrow a} f(x)=L \quad \lim _{x \rightarrow a} g(x)=M
$$

Then $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$

$$
\begin{aligned}
& \lim _{x \rightarrow a}(f(x)-g(x))=L-M \\
& \lim _{x \rightarrow a} f(x) g(x)=L \cdot M \\
& x x
\end{aligned}
$$

$$
\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)
$$

Dinsion is interesting!

$$
\lim _{x \rightarrow 3} 7=7
$$

$$
\lim _{x \rightarrow a} c=c
$$

$$
\lim _{x \rightarrow 3} x=3
$$

$$
f(x)=x
$$

$$
\begin{aligned}
& \lim _{x \rightarrow a} x=a \\
& \lim _{x \rightarrow a} c=c \\
& r(-2 x) \\
& \lim _{x \rightarrow a} x^{2}-2 x+3= \\
& x^{2}=\lim _{x \rightarrow a} x^{2}-\lim _{x \rightarrow a} 2 x+\lim _{x \rightarrow a} 3 \\
& =\left(\lim _{x \rightarrow 0} x\right)\left(\lim _{x \rightarrow a} x\right)-\left(\lim _{x \rightarrow a} 2\right) \cdot\left(\lim _{x \rightarrow a} x\right) \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =a \cdot a-2 \cdot a+3 \\
& =a^{2}-2 a+3
\end{aligned}
$$

$$
\lim _{x \rightarrow a} x^{2}-2 x+3=a^{2}-2 a+3
$$

Dircat Sabstiution Property

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Evey poly ronial his the direct sults property.

Lots of fuctions hure DSP

$$
\lim _{x \rightarrow a} x^{1 / n}=a^{1 / n}
$$

Divisibu:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

so long as $\lim _{x \rightarrow q} g(x) \neq 0$.

$$
\begin{aligned}
& x^{3}-7 x+1 \\
& x^{5}+2 x+1
\end{aligned}
$$

$$
\lim _{x \rightarrow 2} \frac{1-2 x}{3 x^{2}+1}=\frac{\lim _{x \rightarrow 2} 1-2 x}{\lim _{x \rightarrow 2} 3 x^{2}+1}
$$

$$
\begin{array}{r}
=\frac{1-2 \cdot 2}{3 \cdot 2^{2}+1} \\
=\frac{-3}{13} \neq 0 \\
\\
\text { 个 } \\
\text { juotificetion }
\end{array}
$$

Rational furctrens hawe
DSP on

Heir domain.
"Limits don't core about ore point"
If $f(x)=g(x)$ exceptat $x=a$
and if $\lim _{x \rightarrow a} g(x)=L$ then

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { also. }
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1) \text { Iinets }}
\end{aligned}
$$

$$
\begin{aligned}
& =2
\end{aligned}
$$

