$1 / 21$
Average speed.
$d(t) \quad d$ distance troweled in miles t : minutes

$$
\begin{aligned}
& d(0)=0 \\
& d(5)=4.8 \ldots
\end{aligned}
$$

Distance traveled fum time $t=t_{0}$ to $t=t_{1}$

$$
\begin{aligned}
& \Delta d=d\left(t_{1}\right)-d\left(t_{0}\right) \\
& \Delta t=t_{1}-t_{0}
\end{aligned}
$$

Average speed: $\quad \frac{21.23-11.05}{40-20}=0.51 \frac{\text { miles }}{\text { noluee }}$
Rise: $21.23-11.05]$ slope: $\frac{21.23-11.05}{20}=0.51$

Average rates of change correspond to slopes of secant line.

Va-intion: $\quad\left[t_{0}, t_{0}+h\right]$

Aveage speed $\frac{d\left(t_{0}+h\right)-d\left(t_{0}\right)}{h}$
we can lookat this for oor faworite choires of h.

$$
\begin{aligned}
& \quad \frac{d(41+h)-d(41)}{h} \longleftarrow s(h) \\
& h=0: \frac{0}{0} \longrightarrow \text { undefined }
\end{aligned}
$$

We can ask what happens as $h \longrightarrow 0$ but we canst plug in $h=0$.
$\rightarrow \quad S(1)$ average sped

$$
t_{0}=41 \text { to } t_{1}=42
$$

instantaneus speed at $t=41$

$$
\begin{aligned}
& f(x)=\frac{\sin (x)}{x} \\
& f(0)=\frac{0}{0} \rightarrow \text { andectined }
\end{aligned}
$$

$$
\sin (0)=0
$$

What huppeass as $x \rightarrow 0$.

x	$\sin (x) / x$
1	$0.841=\sin (1) / 1$
0.1	0.9983
0.01	$0.99998 \ldots$
0.001	$0.9999998 \ldots$

As $x \rightarrow 0, \frac{\sin (x)}{x} \rightarrow 1$

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \frac{\sin (0)}{0} \in 10-10
$$

$\lim _{x \rightarrow a} f(x)=L$ if the values of $f(x)$ get closer al closer to L as x gets closer and closer to a

avenge speed fun $t=41$ to $t=41+h$

$$
\lim _{h \rightarrow 0} \frac{d(41+h)-d(41)}{h}
$$

instantoneus speed

$$
\text { ot } t=41
$$

the averse speeds apprach the instataneaes speed os $h \rightarrow 0$.

Caribou

$$
\begin{aligned}
& P(t)=1000(1.1)^{t} \\
& P(0)=1000 \cdot(1.1)^{0}=1000 \\
& \prod_{\text {animals }}
\end{aligned}
$$

t is in years

$$
P(1)=1100
$$

change in population fm $t=0$ to $t=1$

$$
P(1)-P(0)=1100-1000=100
$$

\uparrow animals

Average rate of chare, of poputation from $t=0$ to $t=1$?

100 anduals/year.
A veruge nate of chme of population fim $t=1$ to $t=2$

$$
\begin{aligned}
\frac{P(2)-P(1)}{2-1} & =\frac{1000(1.1)^{2}-1000(1.1)^{1}}{2-1} \\
& =1000 \cdot 1.1 \frac{1.1-1}{1}
\end{aligned}
$$

How first is the population changing right at $t=1$ year

$$
t=1 \quad t=2.7
$$

$$
t=1 \quad \text { to } t=1+h
$$

change in animals: $P(1+h)-P(1)$
length of time interval: \hat{h}
average rate of chase, from $t=1$ to $t=1$. th

$$
\rightarrow \frac{\text { animals }}{\text { year }} \frac{P(1+h)-P(1)}{h}
$$

to get the instaitareus rate of chine

