Important broccoli.

- $5^{3} 5^{2}=(5 \cdot 5 \cdot 5)(5 \cdot 5)=5^{5}$
- And $r^{a} r^{b}=r^{a+b}$.
- $\left(5^{3}\right)^{2}=\left(5^{3}\right) \cdot\left(5^{3}\right)=5^{2 \cdot 3}$
- And $\left(r^{a}\right)^{b}=r^{a b}$
- $5^{-1} \cdot 5=5^{0}=1$ and therefore $5^{-1}=1 / 5$.
- Also, $r^{-1}=1 / r$
- $(2 \cdot 7)^{2}=(2 \cdot 7)(2 \cdot 7)=2^{2} 7^{2}$.
- Also $(r s)^{a}=r^{a} s^{a}$

Exponential functions (applied!)

- Exponential functions $f(x)=a^{x}$ describe doubling or halving phenomena.
- They are different from power functions like $p(x)=x^{7}$
- A population that doubles every year has the form $g(t)=C 2^{t}$ for some constant C.
- A population that doubles every three years has the form $g(t)=C 2^{t / 3}$.
- A population that halves every year has the form $g(t)=C 2^{-t}$.
- An account that grows at 10% every year has the form $A(t)=C(1.1)^{t}$.
- Sneak preview: you can write $(1.1)^{t}$ as $2^{a t}$ for a particuar number a. So this is also a doubling phenomenon.

