Last class:
showed coweserce of upwind method for $u_{\epsilon}+a u_{x}=0$
assuming $0 \leqslant \underbrace{\frac{a k}{h}}_{\lambda} \leq 1$
and: $u_{t t}, u_{x x}$ exist and are cortiomans (which
foils in mam cases of interest).

Proof was via a maximum principle idea.
Alternative perspective on haw CFL is plans a role

$$
\left.\begin{array}{l}
\vec{u}_{j+1}=B \vec{u}_{j} \\
B=I-\lambda A \\
A=\left[\begin{array}{ccc}
1 & & \\
-1 & 1 & 6 \\
-1 & \ddots \\
0 & -11
\end{array}\right] \longmapsto A_{p}=\left[\begin{array}{lll}
1 & 0 & -0
\end{array}\right] \\
\text { sine }
\end{array}\right] \quad \text { to } \vec{u}^{\prime}=-\frac{d}{h} A \vec{u}
$$

correspads to periodic instead of Dirichlet BC's.

Ergen vectors of A_{p}

$$
\begin{aligned}
& u_{j}-u_{j-1}=k u_{j} \quad \text { except } \quad u_{0}-u_{N}=p u_{D} \\
& \text { try } u_{j}=e^{I r x_{j}} \\
& e^{I r x_{j}}\left(1-e^{-r h}\right)=k e^{I r x_{j}} \\
& S_{0} \quad K=1-e^{-r h I}
\end{aligned}
$$

But this ignores $u_{0}-u_{N}=x u_{0}$

$$
\begin{aligned}
& 1-e^{r l I}=k=1-e^{-r h I} \\
& \Rightarrow \quad e^{I r l}=e^{r h I} \\
& \Rightarrow \quad e^{r(l+h) I}=1 \\
& \Rightarrow r(l+h)=2 \pi k \\
& \quad r=\frac{2 \pi k}{\frac{l+h}{L}}
\end{aligned}
$$

In fact $\quad u_{i}=e^{t r} x_{i}$ is a most an eigenvector for any choice of r; oily failure is at

$$
u_{0}-u_{N}=\left(1-e^{I r l}\right) u_{0}
$$

\uparrow
bounded if r is real.

$$
1-e^{-r h I} \quad r=\frac{2 \pi k}{L}
$$

We appliad uncthad of lines to

$$
\vec{u}^{\prime}=-\frac{a}{h} A_{p} \vec{u}
$$

Tall espervalues lame ral puat $-\frac{a}{h}(1-\cos \theta)$

$$
\leqslant 0 .
$$

So we'd reed

$$
\begin{aligned}
&\left|\frac{\mathrm{ka}}{\mathrm{~h}}\left(-1+e^{I \theta}\right)+1\right| \leqslant 1 \quad \text { for absoluate } \\
& \text { stability } \\
& \text { to holl! } \\
& \text { (foomlly! complex } \\
& \text { e.s's!) }
\end{aligned}
$$

$$
\begin{aligned}
\left|\lambda\left(-1+e^{-I \theta}\right)+1\right|^{2}= & |1-\lambda+\lambda \cos \theta-\lambda \sin \theta I|^{2} \\
= & \mid-2 \lambda+\lambda^{2}+\lambda^{2} \\
& +2(1-\lambda) \lambda \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1-\cos \theta}{2}=\sin ^{2} \frac{\theta}{2} \\
& =1+2 \lambda(1-\lambda)-2 \lambda(1-\lambda) \cos \theta \\
& =1+2 \lambda(1-\lambda)[\cos \theta-1] \\
& =1-2 \lambda(1-\lambda) 2 \sin ^{2} \theta / 2 \\
& \theta=\frac{r h}{L} \\
& =1-\underbrace{[4(\lambda)(1-\lambda)]}_{0 \leq \uparrow \leq 1} \sin ^{2} \theta / 2
\end{aligned}
$$

CFL \Rightarrow all eignookes lie in resian of abs. staib.

$$
\bar{u}_{j+1}=B \vec{u}_{j} \quad B=I-\lambda A_{p}
$$

eigenvalues are $\quad \mid-\lambda\left(1-e^{I \theta}\right)$
same auluris shows exsemankes of B lune $|K| \leq 1$ if $\lambda \in[0,1]$.
(if eet, eigenvectoes grum at exch lmestep It ε ad $(1+\varepsilon)^{\mu}$ is lage of M is.

What limprees to these eigen vectors fann one trestes to reak?

$$
\begin{aligned}
& X=R e^{I \phi} \\
& K \cdot e^{I r x}=R e^{I(r x+\phi)}=R e^{I r(x+\phi / r)}
\end{aligned}
$$

So in one thane step the rade 1) scales by $|R|$
2) shifts to raght

$$
b y-\phi / r
$$

what's swoposed to happer?

1) scale by 1
2) shift to vioht by ak

$$
\begin{aligned}
& R=\sqrt{1-4 \lambda(1-\lambda) \cos ^{2} \theta} \approx 1-2 \lambda(1-\lambda) \cos ^{2} \theta \text { if } \theta \text { small } \\
& \text { so moles we nesone beng denied. } \\
& \theta=r h \\
& \text { (like he hent equation!) }
\end{aligned}
$$

$$
\begin{aligned}
& \tan \phi=\frac{-\lambda \sin \theta}{1-\lambda+\lambda \cos \theta} \quad \phi=\arctan (-) \\
& \phi=-\lambda \theta\left[1-\frac{1}{6}(1-\lambda)(1-2 \lambda) \theta^{2}+\cdots\right] \\
&-\frac{\phi}{r}=\frac{a k}{h} \frac{\theta}{r}[\square] \quad \text { wrug speed, by } \\
&=\text { ak }\left[1-\cdots \text { tutor of } 1-c \theta^{2}\right. \\
&\left(\text { but it } \lambda=\frac{1}{2},\right. \text { this tan } \\
& \text { vanishes). }
\end{aligned}
$$

