Hupebolic PDEs

Corsider $u(x, t)$ a deasity (staff/leasth)

$U(t)=\int_{x_{0}}^{x_{1}} u(x, t) d x \quad$ total staff between x_{0}, x_{1} at c.

$$
\begin{array}{r}
\frac{d U}{d t}=-F(x, t)+F\left(x_{0}, t\right) \text { fluxes at exdpoints } \\
\text { (unts: stalf por time) to roght }
\end{array}
$$

Hypolhesis: There is a velocity $v(x, t)$ ad staff is movers with prescribed velocity v.

$$
\begin{aligned}
F(x, t)= & v(x, t) \cdot u(x, t) \\
& \uparrow \\
& \frac{\text { Iasht }}{\text { t.mn }} \cdot \frac{\text { stuff }}{\text { lesth }}=\frac{\text { stuff }}{\text { tive }}
\end{aligned}
$$

$v>0 \Rightarrow$ to the risht.

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{0}}^{x_{1}} u(x, t) d k=-v\left(x_{1}, t\right) u\left(x_{1}, t\right)+v\left(x_{0}, t\right) u\left(x_{0}, t\right) \\
& x_{1}=t_{0}+h \\
& \frac{1}{h} \int_{1_{0}}^{x_{0}+h} u_{t}(x, t) d x=\cdot-\frac{w\left(x_{0}+h_{1}, t\right)+w\left(x_{0}, t\right)}{h} \\
& w=v u
\end{aligned}
$$

Now $h \rightarrow 0$

$$
\begin{aligned}
& u_{t}=-\partial_{x}(v u) \\
& u_{t}+\partial_{x}(v u)=0
\end{aligned}
$$

just the flux in here.

Goes by a few runes "advection equations"
"transport equation".

Well start with easy cone: $v=a$, constant.

Super easy case: $a=0$.

$$
\partial_{t} u=0
$$

So a depends only on x.

$$
u(x, t)=u_{0}(x)
$$

Now if a 13 constant

$$
u_{t}+a u_{x}=0
$$

Are there corves alary which a is constat?

$$
\begin{aligned}
& \gamma(r)=(x(r), t(r)) \\
& \frac{d}{d r} u(\gamma(r))=u_{x} \frac{d x}{d r}+u_{t} \frac{d t}{d r}
\end{aligned}
$$

It

1) $\frac{d t}{d r}=1$

$$
\Rightarrow \frac{d}{d v} u(\gamma(r))=u_{t}+a u_{x}=0 .
$$

2) $\frac{d x}{d v}=a$

$$
\begin{aligned}
& \gamma(r)=\left(a r+x_{0}, r+t_{0}\right) \\
& x=a r+y_{0} \\
& t=r+t_{0} \Rightarrow x=a\left(t-t_{0}\right)+x_{0} \\
& t=\frac{1}{a}\left(x-x_{0}\right)+t_{0}
\end{aligned}
$$

These are lines with slope $\frac{1}{a}$.

New coordinates

$$
\begin{aligned}
& U(s, r)=u(x(s, r), t(s, r)) \\
& \frac{d U}{d r}=u_{x} \frac{\partial x}{\partial r}+u_{t} \frac{\partial t}{\partial r}=a u_{x}+u_{t}=0
\end{aligned}
$$

So U is a function of s alose.

We'll know u at $t=0, \quad u(y, 0)=u_{0}(x)$.

x, t come $\operatorname{Sum}(s, r)$ if we stort at $(s, 0)$
and follaw γ up to pameter s and lad an x, t.

$$
\begin{aligned}
& x_{0}=s \quad t_{0}=0 \\
& x=a r+s \\
& t=r \\
& U(s, r)=u(x(s, r), t(s, r)) \\
& u(x, t)=U(s(x, t), r(x, t)) \\
& U(s, 0)=u(s, 0)=u_{0}(s) \\
& U(s, r)=u_{0}(s) \\
& u(u, t)=u_{0}(s(x, t))
\end{aligned}
$$

Con we invert? Sure $s=x-a r=x-a t$

$$
u(x, t)=u_{0}(x-a t)
$$

Termindory: $\quad \gamma(r)$: characteristic curves ot the PDE

The method of solum by looking at the solution alan the characteristics is he "method of chuacterstics"

The bump manes to the right with speed a if $a>0$.

What if

$$
\begin{aligned}
u_{t}+a u & =x \\
\partial_{r} U & =a r+s \\
U & =U(s, 0)+\frac{a r^{2}}{2}+s r \\
u(x, t) & =U(s(x, t), 0)+\frac{a r(\alpha, t)^{2}}{2}+s n \\
& =u_{0}(x)+\frac{a t^{2}}{2}+t(x-a t)
\end{aligned}
$$

We're jost integntry in r.

$$
\begin{aligned}
& u_{t}+(v u)_{x}=0 \\
& u_{t}+v u_{x}=-u v_{x}
\end{aligned}
$$

ignore for now

$$
u_{t}+v(x, t) u_{x}=0
$$

Same strategy $\quad \gamma(r)=(x(r), t(r))$
Suppose $\quad \gamma^{\prime}(r)=(v(x(r), t(r)), 1)$

$$
\begin{aligned}
x^{\prime} & =v(x, t) \\
t^{\prime} & =1 \\
t & =r+t_{0} \\
\frac{d}{d r} & =v\left(x, r+b_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d v} u_{0} \gamma=u_{t}+u_{x} \frac{d x}{d t}=u_{\epsilon}+u_{j} v=0 \\
& x_{0}=s \quad t_{0}=0 \\
& \left.\begin{array}{l}
x^{\prime}=v(x, t) \\
x(0)=s
\end{array}\right] O D E \text { to solve } \\
& U(s, r)=u(x(s, r), t(s, r)) \\
& \partial_{r} U=0 \\
& U(s, r)=U(s, 0)=u(x(s, 0), t(s, 0)) \\
& =u(s, 0) \\
& =u_{0}(s) \\
& u(x(s, r), t(s, r))=u_{0}(s) \\
& u(x, t)=u_{0}(s(x, t))
\end{aligned}
$$

Hand to do in practice 1) Need to solve the ODE
2) Obtain $x(s, r)$

$$
t(s, r)
$$

But wart $s(x, t)$!

But idea is clem

solution 13 constant os it.

And what of

$$
u_{t}+(v u)_{x}=0 ?
$$

$$
\begin{aligned}
& u_{t}+v u_{x}=-v_{x} u \\
& U_{r}=-v_{x}(x(s, r), t(s, r)) \cup(s, r) \\
& U(s, 0)=u_{0}(s)
\end{aligned}
$$

s is corghant. This is an ODE to solve for U with s as a parameter.

