Lost class:

Derived explicit method for solving heat equation.

 $u_{i,s+1} = \lambda u_{i-b,s} + (1-2\lambda) u_{i,s} + \lambda u_{i+s,s} + f_{i,s}$

But we had observed instability: as tome advances

we saw sponses wingles show up in ever example

we looked at.

 $\lambda = \frac{k}{k^2}$

Today's geal: why did this happen?

 $\frac{I'_{n}}{\bar{u}_{sn}} = (I + \lambda D)\bar{u}_{s} + \bar{f}_{s} \quad \text{where}$

This is Euler's method applied to ODE system $\vec{u}' = \frac{1}{h^2} \vec{D}\vec{u}' + \vec{f}$

Region of absolute skability for Euler's method:

1/2 D is supposed to be an approximation of 22

with eigenvalues - (+rn)² 1≤n≤N

These set more reportie a 11 grows.

So we expect $-(\pi n)^2 k > -Z$

 $k < \begin{bmatrix} 2 \\ T \\ T \end{bmatrix} \begin{bmatrix} 1 \\ n^2 \\ n^2 \end{bmatrix}$ $k < \begin{bmatrix} 2 \\ T \\ N^2 \end{bmatrix} = \begin{bmatrix} 3 \\ T \\ N^2 \end{bmatrix}$

So $\frac{k}{h^2} < \frac{2}{11}$ rsh. This analysis is only hearistic: we don't yet know the engences of $\frac{1}{h^2} D.$

To learn these, it's erough to study D.

We make a lucky guess

 $w_j = e^{Jrx_j}$ $J^2 = -1$ (makes trip tobs easy). 2565121

Dw; = e JVX; [eJrh - Z + cJrh] xin = x; + h

 $= -Z w_{j} \left[1 + \cos(rh) \right] e^{i\theta} = \cos\theta + J \sin\theta$

 $e^{-JO} = \cos \Theta - J \sin \Theta$

 $= -4 w_j \left[sin\left(\frac{rh}{2}\right) \right]$

So we almost have an eigenvalue: analysis doesn't apply at j=1, j=N.

Bat we let $V_j = I_m(w_j)$ $v = n\pi$ $v_{o} = 0$ $V_{N+1} = 0$ (h= 1) $\sqrt{I_n(Dw_j)} = DIn(w_j) = Dv_j$ $I_{n}(\mathcal{D}_{w_{j}}) = I_{m}(-\frac{6454}{54}\frac{(\frac{n}{2})w_{j}}{)} = -\frac{645n^{2}(\frac{m}{2})}{V_{j}} I_{m}(\frac{w_{j}}{v_{j}})$ So Vn 3 en essenvector of D with e-value - Zair2 (2) $v_n = n \pi I \leq n \leq N$. Sweet. Eigenvalues of $\frac{1}{h^2}$) as $-\frac{4}{h^2}\sin^2(\frac{n}{2}h)$ $\begin{array}{c} \text{If} \quad \underbrace{V_{n}h}_{2} \quad is \quad snull, \quad - \begin{array}{c} -4 \left[\underbrace{n^{2}\pi^{2}h^{2}}_{h^{2}} \right] = -n^{2}\pi^{2} \\ \left(nh \quad is \quad snall \right) \end{array}$

 $E_{1} \leq E_{0} + k7$ $E_{2} \leq E_{1} + k7$ $\leq E_{0} + k7 + k7$ $= E_{0} + 2k7$

 $E_{M} \leq E_{0} + MkZ$ $= E_{0} + TZ$

(•

50 E0 70, 2-20 -> E-20

+ 50 long as # 1-22 = 0 1 = 27 2 = 2.