Past due to start PDES!
Ch 3: diffusion problems.

Model: heat equation.
space daman $[0,1] \quad$ (imanice a nod)
u: a density of sone kan (particles, energy, hat

$$
u(t, x)
$$ \sim tar)

Flux $f(t, x)$ tells you at tare t, at poscion x, the rate at which stuff is passing by, to the right, in units $\left[U_{t}\right]$

$$
\frac{d}{d t} \int_{x_{1}}^{k_{2}} u(t, x) d x=f\left(t, x_{1}\right)-f\left(t, x_{2}\right)
$$

Leveling hypothesis

$$
f(t, x) \sim u_{x}
$$

$f(t, x)=-k u_{x}$
(more sheally $k(t, x)$, see later)

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{x}}^{x_{2}} u(t, x) d x=-k u_{x}\left(t, x_{1}\right)+k u_{x} \\
&=k \int_{x_{1}}^{x_{2}} u_{x x}(t, x) d x \\
& \int_{x_{1}}^{x_{2}}\left[u_{t}-u_{x x}\right](t, x) d x=0
\end{aligned}
$$

ind of x_{1}, x_{2}. So $u_{t}-u_{x x}=0$.
Domain $\left.\underbrace{1}_{0}\right|_{0} ^{T}$

$$
\Omega=[0, \tau] \times[0,1]
$$

Exeruse: If $u_{t}-k u_{\Delta x}=g$
intepret g. Hint: what ae its oik?

Exercise If $k(t, x)$

$$
u_{t}-\partial_{x}\left(k(t, x) u_{x}\right)=0
$$

Well take $k=1$ even though this hides the units. (con amuse by scaling tame)

Bounden conditions: (even PDE has its own nenosomble classes of $B C$'s).

For us $u(0, x)=u_{0}(x) \quad$ (Initial distribution).

+ Conditions at $x=0, x=1$
Dirichlet: $u(t, 0) u(t, 1)$ prescribed. akin to mantaning fixed taps at and, so matte ubs.

Neman: u_{x} prescribed at $x=0, x=1$.
(flux is - $k u_{x}$, so we are prescribes flux)

We con mix at e tither end, of course.
Rodin:

$$
\begin{gathered}
u_{x}-c u=0 \quad f l u x \text { is a function of } u . \\
-k u_{x}=k c u
\end{gathered}
$$

Well focus for now on homugenears dirichlet conditions $\left.u\right|_{0,1}=0$.
$u_{t}=u_{x x} \mathrm{~cm}$ be thought of as an am log of $u_{t}=A u$, a liner sustan of $O D E s$.

If $A_{v}=\lambda v$ then there's a solution

$$
\begin{aligned}
u & =e^{\lambda t} v \\
u_{t} & =\lambda u \\
A_{u} & =\lambda u
\end{aligned}
$$

If A is diagonalizable with eigen purrs

$$
\begin{aligned}
& \left(v_{1}, \lambda_{1}\right) \ldots\left(v_{n}, \lambda_{2}\right) \\
& u=c_{1} e^{\lambda_{1} v_{v}}+\cdots+c_{1} e^{\lambda_{n} t} v_{n} \quad \text { is a solution. }
\end{aligned}
$$

For initial data u_{0} express it

$$
u_{0}=c_{1} v_{1}+\cdots+c_{n} v_{n} .
$$

Then $u(t)=c_{1} e^{\lambda, t} u_{1}+\cdots+c_{1} e^{\lambda_{1} 6} v_{1}$
solves

$$
\begin{aligned}
& u^{\prime}=A u \\
& u(0)=u_{0}
\end{aligned}
$$

Caution: not even matrix is dingonalizable: $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ is not. $v=e^{A t} u_{0} \quad e^{B}=\sum_{j=0}^{\infty} \frac{B^{5}}{j!} \quad$ solves.

At any rate, whits our arak for eigenvector?

$$
\begin{aligned}
A_{u}= & u_{x x} \\
& u_{x x}=\lambda u+B C^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& u(0)=0 \\
& u(1)=0 \quad \text { (This } 3 \text { why we intullued }
\end{aligned}
$$ henogonais condition)

$u_{x x}=\lambda u \quad$ departs on sisu of λ

$$
\begin{aligned}
& e^{2 \sqrt{\lambda} x} \quad \lambda \geqslant 0 \\
& \cos (\sqrt{-\lambda} x) \quad \sin (\sqrt{-\lambda} x) \quad \lambda<0
\end{aligned}
$$

But to set $u(0)=0, u(1)=0$
only $\lambda<0$ works with $u=\sin (k \pi x)$

$$
e^{-k^{2} \pi^{2} t} \stackrel{\text { eigenfunction }}{\downarrow} \sin (k \pi x) \quad \lambda=-k^{2} \pi^{2}
$$

solution of hat equation.

deny: $-\pi^{2}$

$-4 \pi^{2}$

$$
k=3
$$

A $u=\sum_{k=1}^{n} c_{k} e^{-k_{\pi}^{2} t} \sin (k \pi k)$ solves $P D E, B C^{\prime} 5$, with mike and $\sum_{k=1}^{n} c_{k} \sin \left(k_{\pi x}\right)$.

Morally, one would like to stat with ar wo, al write

$$
u_{0}=\sum_{k=1}^{\infty} q_{k} \sin (k \pi x) \quad \text { the sum to } \cdot \infty
$$ makes this subtle. What does " =" nam?

One hypes

$$
u=\sum_{k=1}^{\infty} q e^{-k^{2} \pi^{2} t} \sin (k \pi x) \text { solves the PDE. }
$$

Finding conditions to jokily this procedure is the domain of Poorer analysis, which is too for afield.

Maxiunem principle for heat equation:
"under the forward flew in tang heat canst ancendoute"

$$
\Omega=[0,1] \times[0, T]
$$

$\partial \Omega$ is houndry
$2 \Omega^{*}$ is boundary excoptfor

$$
\{t=T, x \in(0,1)\}
$$

Weak maximum principle:
If $u_{t}-u_{x x} \leqslant 0$ then $\max n=\max u$.

Cor: if $u_{t}-u_{x x} \geqslant 0$ than $\min _{\Omega} u=\min _{2 \Omega^{*}} u$.
Cor: if $u_{t}-u_{a x}=0, u$ achieves both its and min an $2 \Omega^{*}$
Cor: $\left.u_{t}-u_{x x}=f\right]$ has at moot ore solution:

$$
\begin{aligned}
& \left.\quad u\right|_{t=0}=u_{0} \\
& +\operatorname{dinchlet}^{B C \prime}
\end{aligned}
$$

$$
v=u_{1}-u_{2} \text { lure } v_{\sim}-v_{\mu L}=0
$$

$$
\left.v\right|_{\partial a^{*}}=0 .
$$

Pf: We first shews the property hods if $u_{t}-u_{x x}<0$ everutea in interior.

At a point in $\Omega \backslash 2 \Omega^{+}$where a maxis achieved.
$u_{t} \geqslant 0$
$u_{x}=0$
$u_{\text {cu }} \leq 0$.
$<$ uses not at $\leqslant=0$
Junes not on space bound ry

So $u_{t}-u_{x x} \geqslant 0$ at this point
But so such port exists.
Now suppose orly $u_{t}-u_{x x} \leqslant 0$.
Let $v_{\varepsilon}=u-\varepsilon t$
So $\left(v_{\varepsilon}\right)_{t}-\left(v_{\varepsilon}\right)_{4_{x}}=-\varepsilon+u_{t}-u_{x x}<0$.
So v_{ε} achieves its max on $2 \Omega^{*}$.

$$
\left[\begin{array}{cc}
\max & u \\
\Omega \backslash 2 \varepsilon^{*}
\end{array}\right]-\varepsilon T \leqslant \max _{\Omega b \varepsilon^{*}}(u-\Sigma t) \leq \max _{2 \Omega^{*}}(u-\varepsilon t) \leq \max _{\partial \varepsilon^{*}} u
$$

Now send $\varepsilon \rightarrow \theta$.

Enersy

$$
\begin{aligned}
E(t) & =\frac{1}{2} \int_{0}^{1}\left|u_{x}\right|^{2} d x \\
\frac{d}{d t} E(t) & =\int_{0}^{1} u_{x} u_{x t} d x \\
& =\int_{0}^{1} \alpha_{x}\left(u_{x} u_{t}\right)-u_{x x} u_{t} d x \\
& =\int_{0}^{1} \alpha_{x}\left(u_{x} u_{t}\right)-\left(u_{t}\right)^{2} d x \\
& =\left.u_{x} u_{t}\right|_{0} ^{1}-\int_{0}^{1}\left(u_{t}\right)^{2} d x
\end{aligned}
$$

Hamagerens Verman $\Rightarrow \frac{d}{d t} E(t) \leq 0$
Honogerews Dirizhlet $\Rightarrow \frac{d}{d t} E(t) \leqslant 0$

Solution becmes "smoothre"
If $E(t)=0$ at same point, $E(t) \equiv 0$.

Exeruse: Show tut thee is at most are solution (C^{2}, say, in daman).

$$
\begin{aligned}
& u_{t}=u_{<x} \\
& u(0, x)=u_{0} \\
& u(t, 0)=b_{0}(t) \\
& u(t, 1)=b_{1}(t)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\left.\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]\right]^{n}=\left[\begin{array}{cc}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right] t^{n} \\
\frac{\sum \lambda^{n} t^{n}}{n!}=e^{\lambda t} \sum_{n=0}^{\infty} \frac{n \lambda^{n-1} t^{n}}{n!} & =\sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)} t^{n} \\
& =t \sum_{n=1}^{\infty} \frac{(t \lambda)^{n-1}}{(n-1)!} \\
& =t e^{\lambda t} \\
e^{t A}=\left[\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

