Past due to start PDES!

Ch 3: diStusion problems.

Model: heat equation.

spuce domain [0,1] (imague a rod) u: a density of some kind (porticles, energy, hout ntay) u (t, x) Flux f (6,x) tells you at time to at position x, The rate at which staff is passing by, to the right, in much [4]] $\frac{d}{dt} \int_{x_1}^{x_2} u(\xi_1 x) dx = f(\xi_1, x_1) - f(\xi_1, x_2)$

Leveling hypothes:s $f(t,x) \sim u_x$ \leq $f(\varepsilon, x) = -k u_x$ (more generally, E(E, X),

 $\frac{d}{dt}\int_{x}^{x_{z}} u(t,x)dx = -ku_{x}(t,x) + ku_{x}$ $= k\int_{x_{z}}^{x_{z}} u_{xx}(t,x)dx$

 $\int_{x_{i}}^{x_{z}} \left[u_{\xi} - u_{xx} \right] (\xi, x) dx = 0$

ind of x, x2. So up - un = 0.

Domuun $D = [0, T] \times [0, 1]$

see later)

Exercise: If ut - kury = g

intepret g. Hunt: what as its unik?

Exercise If $k(\xi, x)$ $u_{\xi} - \partial_{x}(k(\xi, x) u_{x}) = 0$.

We'll take k=1 even though this hides the units. (con arrive by scaling time)

Boundary conditions: (every PDE hus its own vensamble clusses of BC's).

For us u(0,x) = uo(x) (Initial distribution).

+ Conditions at x=0, x=1

Dirichlet: u(t, 0) u(t, 1) proscribel.

aken to mountaining fixed temps at and, so matter what.

Nermann: ux prescribed at x=0, x=1. (flux is - kux, so we are prescribing flux) We can mix at either end, of course. Rubih: $u_x - cu = 0$ flux is a function of a -kux = kcu We'll focus for now on homoseness dirichlet conditions up= 0. U6 = Uxx can be thought of as an analog of ut = Au, a low system of 60fs. If Av = Iv then there's a solutrap $u = e^{\lambda t} v$ $u_t = \lambda u v$ $A_u = \lambda u v$

If A is diagonalizable with eigen puirs (VI, XI). , (VI, M) u= c, e^{hic}y, + ... + cn e^{hat}Un is a solution. For initial data up express it $u_0 = c_1 V_1 + \cdots + c_n V_n.$ Then $u(t) = c_1 e^{\lambda_1 t} \dots + c_n e^{\lambda_n t} v_n$ solves u'= Au u(o>= uo Cantion: not every metric is diagonalizede: [2] is not $v = e^{AE}u_0$ $e^{B} = \sum_{j=0}^{\infty} \frac{B^{j}}{j!}$ solves. At any vorte while our analog for eigenvetor? Au = uxx + BCS un = Du u (6) 2 0 (this is shy we usuallued 4(1)=0 homogeneres cardities)

Morally, one would like to start with my ug ad write $u_0 = \sum_{k=1}^{60} c_k \sin(kmx)$ the sum to . =0 makes this subtle. What does "=" nem?

One hopes u = 2 q e KTI2E sin (KTIX) solves the PDE. k=1

Findows conditions to justify this procedure is

the domain of Fourier analysis, which is

too for afield.

Maximum principle for heat equation:

"under the forward flew in tang heat an't encondrate"

Weak maximum principle: If $u_{\xi} - u_{xx} \leq 0$ then max $u = u_{xx} \leq u_{x}$ Set $\partial \Omega^{*}$ (or: $rd = u_{xx} \geq 0$ then max = max = 0(or: $rd = u_{xx} \geq 0$ then max = max = 0Cor: $rd = u_{xx} \geq 0$ then max = max = 0Cor: $rd = u_{xx} = 0$, $u_{x} = chieves both its max = 0$ $u_{x} - u_{xx} = 0$, $u_{x} = chieves both its max = 0$ $u_{x} - u_{xx} = 0$, $u_{x} = chieves both its max = 0$ $u_{x} - u_{xx} = 0$, $u_{x} = chieves both its max = 0$ $u_{x} - u_{xx} = 0$, $u_{x} = chieves both its max = 0$ $u_{x} - u_{xx} = 0$, $u_{x} = chieves both its max = 0$ $u_{x} - u_{x} = 0$, $u_{x} = chieves both its = 0$ $u_{x} - u_{x} = 0$, $u_{x} = 0$,

Pf: We first show the property hilds if ut-uxx < 0 everywhere in interior. At a point in Shi 2 2t where a max is achieved. ut >, 0 - E uses not al t=0 Ux = 0 Juses not on space boundary u₄₄ 50. So ut - ux > 0 at this point But so such pourt exists. Now suppose only up-un < 0. Let $v_{\epsilon} = u - \epsilon t$

So $(v_{E})_{E} - (v_{E})_{u_{X}} = -E + u_{E} - u_{x_{X}} < 0.$

So ve achives its max on 2 12.

 $\left[\begin{array}{c} m_{0 \times} & u \\ \Omega \\ 1 \\ 2 \\ \Omega^{\dagger} \end{array} \right] = ET \\ E \\ M_{0 \times} \\ M_{0 \times}$

Now send E-> 0.

Enersy

 $E(t) = \iint_{Z} |u_{x}|^{2} dx$

 $\frac{d}{14}E(t) = \int_{0}^{1} u_{x} u_{xt} dx$ $= \int_{a}^{b} d_{x}(u_{x}u_{z}) - u_{xx}u_{z} dx$ $= \int_{a}^{b} \partial_{x} (u_{x}u_{z}) - (u_{z})^{2} dx$ $= u_{X}u_{\xi} \Big|_{-} \int_{0}^{1} (u_{\xi})^{2} dx$ Homogeneus Neuma = A E(E) ≤ O Hunosenews Divichlet >> 1 E(E) < 0 Solution becaus "snoother !!

If E(t) = 0 at some point, $E(t) \equiv 0$.

Show but there is at most are Exercise. solution (C2, say, in daman).

UE Unex

ulox)=up

 $u(\xi_0) = b_0(\xi)$ $u(\xi_1) = b_1(\xi)$

