$$
\begin{aligned}
u_{n+1} & =u_{n}+\lambda h u_{n} \\
\rho & =(1+\lambda h)^{n}
\end{aligned}
$$

Recap:
$L M M_{S}$

$$
\begin{aligned}
& L_{n} u_{n+k}+\cdots+\alpha_{0} u_{k}=h\left(\beta_{n} u_{n+k}+\cdots+\beta_{0} u_{0}\right) \\
& \sigma(p)=\alpha_{n} \rho^{n}+\cdots+\alpha_{1} \rho+\alpha_{0}
\end{aligned}
$$

a chanacterstic poly.
Zero stable \Leftrightarrow bouded initial data remain boudd as $h \rightarrow 0$
\Leftrightarrow roots of σ satisfy root conditar (\mid plstete).
Dahlquest:
If conarstest: zevo stable \Leftrightarrow convegunt

Absolute stubility: Appy methend to $u^{\prime}=\lambda u$.
Absolutely stable for $z=h \lambda$ if solutious remarn bounded as $n \rightarrow \infty$

Inpontoin if the we strong tracsiots: want then to decy even if we dant model than ascuouately.

$$
\sigma(\rho)-z N(\rho)=0 \quad \eta(\rho)=\beta_{1} \rho^{a}+\cdots+\beta_{1} \rho+\beta_{0}
$$

LMM stibilily poly rencal

Absolutely stable for z if all roots of $q(p)=\sigma(p)-z n(p)$ have $|p| \leq 1$ (+sinplriti).

Region of absolute stabilit:
\{z: methal is abs stable for thatz\}
Euler: $\quad p-1=z$

Bacturd Enler $e-1=z e$

$$
p(1-z)=1 \quad p=\frac{1}{1-z}
$$

deay wlaeen Re $\lambda<0$,
A-stalle

How to visualize more seneally when you cunt fad the rooks

$$
\begin{gathered}
\sigma(p)-2 x(p)=0 \\
z=\frac{\sigma(p)}{\eta(p)} \&
\end{gathered}
$$

Pick your favorite ρ. Plus into l. For that z, your favertep will be a root of the stability polyianial.

$$
f(\theta)=\frac{\sigma\left(e^{i \theta}\right)}{\eta\left(e^{i \theta}\right)} \quad \text { This will be the }
$$ absolute stability regin.

Euler: $z=-1+e^{i \theta}$
B. Euler $z=1-\frac{1}{\rho}$

$$
=1-e^{-i \theta}
$$

See HW for exmople with a Alums-Brohiforth.

Ales stability for $R-K$ (k-stage)

$$
\begin{gathered}
Y_{1}=u_{n}+h \sum_{j=1}^{k} a_{1 j} f\left(t+c_{j} h, Y_{j}\right) \\
\vdots \\
Y_{k}=u_{n}+h \sum_{j=1}^{k} a_{k j} f\left(t+c_{j} h, Y_{j}\right)
\end{gathered}
$$

Y_{j} an approxmate solution at $t+c_{j} h$

$$
u_{n+1}=u_{1}+h \sum_{j=1}^{k} b_{j} f\left(t+c_{j} h, Y_{j}\right)
$$

Apply to $f(t, u)=\lambda u$

$$
\begin{aligned}
& {\left[\begin{array}{l}
Y_{1} \\
Y_{k}
\end{array}\right]=u_{n}\left[\begin{array}{l}
1 \\
\vdots \\
1
\end{array}\right]+h \lambda A\left[\begin{array}{l}
Y_{1} \\
\vdots \\
Y_{k}
\end{array}\right]} \\
& (I-z A) Y=u_{n} w \\
& Y=u_{n} f(z, b) \quad \text { for } z \text { small }
\end{aligned}
$$

$$
\begin{aligned}
Y & =u_{n}(I-z A)^{-1} w \\
u_{n+1} & =u_{n}+z b \cdot u_{n}(I-z A)^{-1} v \\
& =u_{n}\left[1+z b \cdot(I-z A)^{-1} w\right] \\
& =R(z) u_{n}
\end{aligned}
$$

\rightarrow stabilits fucton for R-K.
\rightarrow will be a polynamial in z if the methad is explicitf (s

Ahs sluble at z if $|R(z)| \leqslant 1$.

So visualize the abs stebility region by lookus at contour $|R(z)|=1$. See notebook. contoor plit.

