Lust class: Euler's method

$$
u_{i+1}=u_{i}+h f\left(t_{i}, u_{i}\right)
$$

Local truncation error

$$
\begin{aligned}
& u^{\prime}=f(t, u) \text {, subosthute into } \\
& \frac{u_{i+1}-u_{i}}{h}-f\left(t_{i}, u_{i}\right)=0 \\
& \frac{\left.u\left(t_{i}\right)+u^{\prime}\left(t_{i}\right) h+\frac{u^{\prime \prime}\left(f_{i}\right) h^{2}}{2}-u b_{i}\right)}{h} u^{\prime}\left(t_{i}\right)=\frac{u^{\prime \prime}\left(\eta_{i}\right)}{2} h \\
& \uparrow \\
& -\tau_{i} \quad O(h)
\end{aligned}
$$

Consistent: $\quad \tau_{i} \rightarrow 0$ as $h \rightarrow 0$
error: $\quad e_{i}=u_{i}-u\left(t_{i}\right)$

$$
\|e\|_{s o}=\max _{0 \leq i \leq M}\left|e_{i}\right|
$$

Convergent: Hells $\rightarrow 0$ us $h \rightarrow 0$.

San anecdotal evidence $\|e\|_{\infty}=O(h)$

Let's pave this for

$$
\begin{aligned}
& u^{\prime}=\lambda u \\
& u\left(b_{0}\right)=u_{0}
\end{aligned}
$$

$$
\begin{aligned}
u_{i+1} & =u_{i}+h \lambda u_{i} \\
& =(1+h \lambda) u_{i}
\end{aligned}
$$

$$
\begin{aligned}
u\left(t_{i+1}\right) & =u\left(t_{i}\right)+h f\left(t_{i}, u\left(t_{i+1}\right)\right)-h \tau_{i} \\
& =u\left(t_{i}\right)+h \lambda u\left(t_{i+1}\right)-h \tau_{i}
\end{aligned}
$$

$$
\begin{aligned}
e_{i+1} & =e_{i}+\lambda h e_{i}+h \tau_{i} \\
& =(1+\lambda h) e_{i}+h \tau_{i}
\end{aligned}
$$

Intep-etation: evror at the next trme otep comes frem two puils

1) propagation at error fam previous time otep: $(1+\lambda h) e_{i}$
2) new erron from local trumertion: $h \tau_{i}$
eo initial ciron (e.g. ruanding frem initial candition)

$$
\begin{aligned}
e_{1} & =(1+\lambda h) e_{0}+h \tau_{0} \\
e_{2} & =(1+\lambda h) e_{1}+h \tau_{1} \\
& =(1+\lambda h)^{2} e_{0}+(1+\lambda h) h \tau_{0}+h \tau_{1} \\
e_{3} & =(1+\lambda h)^{3} e_{0}+(1+\lambda h)^{2} h \tau_{0}+(1+\lambda h) h \tau_{1}+h \tau_{2} \\
& =(1+\lambda h)^{3} e_{0}+\sum_{k=0}^{2}(1+\lambda h)^{k} h \tau_{2-k} \\
e_{M} & =(1+\lambda h)^{M} e_{0}+h \sum_{k=0}^{M-1}(1+\lambda h)^{k} \tau_{M-k}
\end{aligned}
$$

S_{6} we get contributions from initial error, plus. each local trunction, exch scaled by $(1+\lambda h)^{\circ} \quad 0 \leq \leq \leq M$.

Suppose we cm fud K independent of h such taal

$$
\begin{aligned}
&\left|(1+\lambda . h)^{j}\right| \leq K \quad \text { for } \quad 0 \leq s \leq \mu . \\
&\left|e_{k}\right| \leq K\left|e_{0}\right|+K h \sum_{j=0}^{k-1}\left|\tau_{j}\right| \\
& \leq K\left|e_{0}\right|+K \max \left|\tau_{j}\right| \quad h M \\
&=K\left|e_{0}\right|+K T \max \left|\tau_{j}\right| \\
&\|e\|_{\infty} \leq K\left[\left|e_{0}\right|+K T \max _{0 i_{j}<M}\left|\tau_{j}\right|\right] \\
& \tau_{j} \rightarrow 0
\end{aligned}
$$

If $\left|e_{0}\right| \rightarrow 0$ than $h e l_{o} \rightarrow 0$
and we hare convesence.
If $e_{0}=0,\|e\|_{\infty}=O(h)$ since $\tau_{j}=O(h)$.

A more sophisticated proof, based on the sume idens, shuus that $f(t, u)$ is continumens and is Lipshitz on un, Then Euler's methad is convergent (ursumne $e_{0}=0$) ad the crrer vanishis $O(h)$.
$(K T)$-max $\left|Z_{j}\right|$ evor vuisles at la bone vate as the local tamcation enom.

Dcf: A Smiter differce methad is p-Th onder accurve if (assimms intial errior is ze0) $\|\mathrm{e}\|_{00}=O\left(h^{p}\right)$.
So Eule's methan 13 fingt ander accuate.
Now, about that K

$$
(1+h \lambda)^{j}
$$

couldk >1, so grus in j. But $0 \leqslant j \leqslant M$

$$
\begin{aligned}
\left|(\mid+h \lambda)^{j}\right| & =|1+h \lambda|^{j} \\
& \leq(1+h|\lambda|)^{j} \\
& \leq(1+h|\lambda|)^{M} \\
& =(1+h \mid \lambda)^{T / h}
\end{aligned}
$$

I $\operatorname{clamm} \quad(1+h|\lambda|) \leq e^{h(\lambda)}$

$$
\begin{gathered}
\underbrace{1+x}_{f(x)} \leqslant \underbrace{e^{x},}_{g(x)} \quad x \geqslant 0 \\
f(0)=1 \quad g(0)=1 \\
f^{\prime}(x)=1 \quad g^{\prime}(x)=e^{x}>1 . \\
\text { So } \quad(g-f)(0)=0 \\
(g-f)^{\prime}(x) \geqslant 0 \quad \text { for } x \geqslant 0 . \\
\Rightarrow(g-f)(x) \geqslant 0 \text { for } x \geqslant 0 . \\
(1+h|\lambda|)^{M} \leq e^{h|\lambda| M}=e^{|\lambda| T} \\
\quad k
\end{gathered}
$$

Heuristic: At each step we make a new error of the size of the local frication error $o\left(h^{r}\right)$, tres the the step $O\left(h^{p+1}\right)$.

We make this aron on $\frac{T}{h}$ trimesters, to get $\frac{T}{h} O\left(h^{p+1}\right)=T O\left(h^{p}\right)=O\left(h^{p}\right)$ error.

So the size of the LTE "should" be roughly the size of the global enow. pith aden accents mothers arise clem

$$
L T E \text { is } O\left(h^{r}\right) .
$$

This assumes the method macutains control on the grunt of the emirs (air conotiatt independent of h). If there is no analog of K, the method con fail to be convergent even when it is consibteit.

Other methads

1) Eulers methad: $u^{\prime}\left(t_{i}\right)=\frac{u\left(t_{i+1}\right)-u\left(t_{i}\right)}{h}-\frac{u^{\prime \prime}\left(n_{i}\right)}{2} h$
2) Backund euler $u^{\prime}\left(t_{i}\right)=\frac{u\left(t_{i}\right)-u\left(t_{i-1}\right)}{h}+\frac{u^{\prime \prime}\left(\eta_{i}\right)}{2} h$

$$
\begin{gathered}
u\left(t_{i-1}\right)=u\left(t_{i}-h\right)=u\left(t_{i}\right)+u^{\prime}\left(t_{i}\right)(-h)+\frac{u^{\prime \prime}\left(x_{i}\right) h^{2}}{2} \\
u^{\prime}\left(t_{i}\right)=\frac{u\left(t_{i}\right)-u\left(t_{i-1}\right)}{h}+\frac{u^{\prime \prime}\left(x_{i}\right) h}{2} \\
\frac{u\left(t_{i}\right)-u\left(t_{i-1}\right)}{h}=f\left(t_{i}, u_{i}\right) \\
u\left(t_{i}\right)=u\left(t_{i-1}\right)+h f\left(t_{i}, u_{i}\right) \\
\left.u\left(t_{i+1}\right)=u\left(t_{i}\right)+h f\left(t_{i+c}\right) u_{i+1}\right)
\end{gathered}
$$

Now there's had work to do to solve for u_{i+1} becuse of the norliven equention.

Eulers methad is cilled explicit becouse it gives us a formelu $u_{i+1} m$ tems of prion.

Buckunds Euler is nuplicit, becuse it is not expliz.t.

In implementation: Matlub: fzero
pythan: scipy. ophurze folve
But this adds compautcutaion tame. (why bother?
Higler osder? Nope: $O(h)$ truncctas evar). Stey turrel.
3) Midpoint (AKA leapfrog)

$$
\begin{aligned}
u^{\prime}\left(t_{i}\right)=\frac{u\left(t_{i+1}\right)-u\left(t_{i-1}\right)}{2 h} & +\tau_{i} \quad \tau=\sigma\left(h^{2}\right) \\
& \rightarrow-\frac{u^{\prime \prime \prime}\left(n_{i}\right)}{6} h^{2}
\end{aligned}
$$

$$
\begin{aligned}
& u\left(t_{i}\right)+u^{\prime}\left(t_{i}\right) h+\frac{u^{\prime \prime}\left(t_{i}\right) h^{2}}{2}+\frac{u^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{6} \\
&-u\left(b_{i}\right)-u^{\prime}\left(t_{i}\right)(-h)-\frac{u^{\prime \prime}\left(t_{i}\right) h^{2}}{2} \\
& \frac{-u^{\prime \prime \prime}\left(\mu_{i}\right)(-h)^{3}}{6}
\end{aligned}
$$

$$
=u^{\prime}\left(6_{i}\right) 2 h+\frac{1}{6}\left[u^{\prime \prime \prime}\left(n_{i}\right)+u^{\prime \prime \prime}\left(n_{i}\right)\right] h^{3}
$$

$$
u^{\prime}\left(t_{i}\right)+\frac{1}{6}\left(\text { ans } f u^{\prime \prime \prime}\right) h^{2}
$$

This suggests an $O\left(l^{2}\right)$ method.
$O(h)$: to gas a digit of uccuncy need $10 \times$ as any obs $O\left(h^{2}\right)$: to gan two digits
$I \quad O$.
0.0
0.00
0.000
0.0000
0.000060
0.
0.00
0.0000

0,00000000
in sore nubs of true steps

Minor subtlety:

$$
u\left(t_{i+1}\right)=u\left(t_{i-1}\right)+2 h f\left(t_{i}, u_{i}\right)
$$

"multistep method". Information from two prior steps is used. It's still explicit, which is nice.

Need to bootstup u_{0}, given and u_{i} s sone other.
Need to pick u, to not spoil $O\left(h^{2}\right)$, ad Elis method will work: $h \cdot \tau$ ever is $\left.O h^{2}\right)$.

We'll shortly see some undesired behavior,
though.

