1. Consider the heat equation $u_{t}=\kappa u_{x x}$ for $\kappa>0, x \in[0,1]$, and Dirichlet boundary conditions $u(0, t)=0$ and $u(1, t)=0$. Suppose we have initial condition $u(x, 0)=$ $\sin (5 \pi x)$.
a) Find an exact solution to this problem.
b) Implement the backward Euler (BE) method to solve this heat equation problem. Specifically, use diffusivity $\kappa=1 / 20$ and final time $T=0.1$. Note that you do not need to use Newton's method to solve the implicit equation, which is a linear system, but you should use sparse storage and an efficient linear solver (backslash in MATLAB will work).
c) Suppose the timestep k and the space step h are related by $k=2 h$. What do you expect for the convergence rate $O\left(h^{p}\right)$? Then measure it by using the exact solution from a), at the final time, and the infinity norm $\|\cdot\|_{\infty}$, and $h=0.05,0.02,0.01,0.005,0.002,0.001$. Make a log-log convergence plot of h versus the error.
d) Repeat parts b) and c) but with the trapezoidal rule instead of BE. (That is, implement and measure the convergence rate of Crank-Nicolson, with everything else the same.)
2. Consider the PDE

$$
u_{t}=\partial_{x}\left(p(x) u_{x}\right)
$$

where $p(x)$ is a given function. We wish to solve the PDE on the region $0 \leq x \leq 1$, $0 \leq t \leq T$ with $u=0$ at $x=0,1$ We will apply the following finite difference scheme to it:

$$
u_{i, j+1}=u_{i, j}+\frac{k}{h^{2}}\left[\left(u_{i+1, j}-u_{i, j}\right) p_{i+\frac{1}{2}}-\left(u_{i, j}-u_{i-1, j}\right) p_{i-\frac{1}{2}}\right]
$$

where $p_{i \pm \frac{1}{2}}=p\left(x_{i} \pm h / 2\right)$.
a) Estimate the local truncation error in terms of powers of h and k and in terms of derivatives of u and derivatives of p. I'm looking for an answer akin to the estimate we derived for the heat equation of the form

$$
|\tau| \leq \max \left|u_{x x x x}\right|\left[\frac{k}{2}+\frac{h^{2}}{h}\right]
$$

that we derived for the heat equation with no forcing term.
b) Show that the method is convergent, assuming $0<p(x) k<h^{2} / 2$. You will want to revist the proof from class that the explict method for the standard heat equation is convergent.
3.
a) Let

$$
A=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

Compute $\|A\|_{1}$ and $\|A\|_{\infty}$.
b) Estimate $\|A\|_{2}$ as follows. Computer generate a figure containng the boundary of $A\left(B_{1}\right)$, where B_{1} is the Euclidean ball of radius 1 . Then use the figure to estimate the norm.
c) Suppose A is an $n \times n$ matrix, and choose $p \in[1, \infty]$. Show that $\|A\|_{p}=0$ if and only if A is the 0 matrix.
d) For vectors in \mathbb{R}^{n}, it is known that $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$ for any $p \in[1, \infty]$. This is the triangle inequality, and you need not prove it. But using this fact, show that the triangle inequality also holds for matrix norms $\|\cdot\|_{p}$ for p in the same range.
4. Text, problem 3.7

