Let *A* be a subset of \mathbb{R}^n . A map $f : A \to \mathbb{R}^m$ if whenever $x_j \to x$ in *A*, $f(x_j) \to f(x)$ in \mathbb{R}^m .

It is easy to show (you need not do this) that such a map is continuous if and only if each component function $f_k : A \to \mathbb{R}$, $1 \le k \le m$ is continuous.

A path in a set $B \subseteq \mathbb{R}^m$ is a continuous map $\gamma : [0,1] \to B$. Given b_0 and b_1 in B, a path from b_0 to b_1 is a path γ in B with $\gamma(0) = b_0$ and $\gamma(1) = b_1$. The set is path connected if for all b_0 and b_1 in B, there is a path from b_0 to b_1 .

- **1.** By a concrete construction, show that $S^1 \subseteq \mathbb{R}^2$ is path connected.
- **2.** Use the intermediate value theorem to show that $\mathbb{R} \setminus \{0\}$ is not path connected.
- **3.** Show that SU(2), the set of unit quaternions, is path connected. You may use the fact that a set *B* is path connected if and only if there exists an $\hat{b} \in B$ such that for any *b* in *B* there is a path from \hat{b} to *b*.
- **4.** Breifly explain why matrix multiplication is a continuous map from $R^{n \times n} \times R^{n \times n}$ to $R^{n \times n}$.
- **5.** 3.2.1-3.2.3. You are encouraged to have a brief solution; full rigor is not required.