- **1.** Stillwell 2.5.1
- **2.** Stillwell 2.5.2
- **3.** Stillwell 2.5.3
- **4.** A linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ can be represented as a matrix as follows. Let e_i be the standard basis vectors and let $x_j = L(e_j)$. We can write x_j as a sum $\sum_i L_j^i e_i$. The matrix of L is the matrix L_j^i where i is the row index and j is the column index.
 - a) Consider the map $q \to -\overline{q}$ from \mathbb{H} to \mathbb{H} . Show that this map is linear. Then compute its matrix representation. What is the determinant of this matrix representation?
 - b) Let *u* be a unit quaternion *u*. Consider the map $q \mapsto uq$ from \mathbb{H} to \mathbb{H} . Show that this map is linear. Then compute its matrix representation. Then compute the determinant of this matrix representation.
 - 5. Challenge. Without citing that an isometry of \mathbb{R}^n that fixes the origin is linear, show that such a map takes lines through the origin to lines through the origin. Due in two weeks.