1. Stillwell 2.5.1
2. Stillwell 2.5.2
3. Stillwell 2.5.3
4. A linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be represented as a matrix as follows. Let e_{i} be the standard basis vectors and let $x_{j}=L\left(e_{j}\right)$. We can write x_{j} as a sum $\sum_{i} L_{j}^{i} e_{i}$. The matrix of L is the matrix L_{j}^{i} where i is the row index and j is the column index.
a) Consider the map $q->-\bar{q}$ from \mathbb{H} to \mathbb{H}. Show that this map is linear. Then compute its matrix representation. What is the determinant of this matrix representation?
b) Let u be a unit quaternion u. Consider the map $q \mapsto u q$ from \mathbb{H} to \mathbb{H}. Show that this map is linear. Then compute its matrix representation. Then compute the determinant of this matrix representation.
5. Challenge. Without citing that an isometry of \mathbb{R}^{n} that fixes the origin is linear, show that such a map takes lines through the origin to lines through the origin. Due in two weeks.
