1. Starting from the formula $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$ for all complex numbers z_{1} and z_{2}, and using the fact that $e^{i \theta}=\cos \theta+i \sin \theta$ for all $\theta \in \mathbb{R}$, show

$$
\begin{aligned}
& \sin (\theta+\phi)=\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi) \\
& \cos (\theta+\phi)=\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi) .
\end{aligned}
$$

2. Use the results of problem 1) to show that $S O(2)$ is a matrix group.
3. Text: 1.1.2
4. Text: 1.1.3
5. Derive the formulas $R_{\theta_{1}} R_{\theta_{2}}=R_{\theta_{1}+\theta_{2}}$ and $z_{\theta_{1}} z_{\theta_{2}}=z_{\theta_{1}+\theta_{2}}$.
6. Text: 1.2 .3 (You'll want to read page 6 first)
7. Text: 1.2.4
8. Text: 1.2.5
