In this document we establish the following facts about \mathbb{R}^n :

- 1. Any two norms are equivalent.
- 2. The closed unit ball with respect to any norm is compact.
- 3. It is complete, with respect to any norm.

We then show that these same facts are true for any finite-dimensional vector space over $\mathbb R$ or $\mathbb C.$

For \mathbb{R}^n , it will be convenient to work with the infinity norm,

$$||x||_{\infty} = \max_{i=1}^n |x_i|.$$

We first establish facts 1 and 2 for $\|\cdot\|_{\infty}$.

Lemma 1: The $\|\cdot\|_{\infty}$ closed unit ball $\{x \in \mathbb{R}^n : \|x\|_{\infty} \le 1\}$ in \mathbb{R}^n is compact with respect to $\|\cdot\|_{\infty}$.

Proof. Let $\{x_j\}_j$ be a sequence in \mathbb{R}^n with $||x_j||_{\infty} \leq 1$ for each j and let us write $x_j = (x_j(1), \ldots, x_j(n))$. Observe that each $|x_j(1)| \leq 1$ and hence there is a subsequence $\{x_{j_k}\}_k$ that converges to some $x(1) \in \mathbb{R}$ with $|x(1)| \leq 1$ also. Applying this argument to $\{x_{j_k}\}_k$ we find a sub-subsequence with $x_{j_{k_\ell}}(2) \rightarrow x(2)$ for some x(2) with $|x(2)| \leq 1$. Further repeating this argument we can extract a final subsequence, call it $\{y_k\}$, where for each $j = 1, \ldots, n$, $y_k(j) \rightarrow x(j)$ for some x(j) with $|x(j)| \leq 1$.

Setting x = (x(1), ..., x(n)), it is clear that $||x||_{\infty} \le 1$. We claim that $y_k \to x$ with respect to $|| \cdot ||_{\infty}$. Indeed, let $\epsilon > 0$. For each *j* pick K_j such that if $k \ge K_j$, then

$$|y_k(j) - x(j)| < \epsilon$$

Then if $k \ge K = \max(K_1, \ldots, K_n)$ then

$$||y_k-x||_{\infty}=\max_{j=1}^n|y_k(j)-x(j)|<\epsilon.$$

There is nothing special about unit balls compared to balls of an arbitrary radius:

Exercise 1: Use the previous result to show that for any $R \ge 0$, $B_R = \{x \in \mathbb{R}^n : ||x|| \le R\}$ is compact.

The following three exercises are straightforward applications of the definitions for metric spaces.

Exercise 2: Show that a Cauchy sequence in a metric space is bounded.

Exercise 3: Show that a Cauchy sequence in a metric space with a convergent subsequence actually converges.

Lemma 2: The space \mathbb{R}^n is complete with respect to $\|\cdot\|_{\infty}$.

Proof. Let $\{x_n\}$ be Cauchy with respect to $\|\cdot\|_{\infty}$. Then the sequence is bounded and there is some *R* such that $\|x_n\|_{\infty} \leq R$ for all *n*. The closed ball of radius *R* is compact, and thus the sequence admits a subsequence converging to some *x* with $\|x\|_{\infty} \leq R$. But Cauchy sequences with convergent subsequences converge and thus $x_n \to x$.

We now show that any norm on \mathbb{R}^n is equivalent to $\|\cdot\|_{\infty}$. This establishes fact 1, since equivalence of norms is transitive. The key ingredients of the argument are the compactness of the $\|\cdot\|_{\infty}$ unit ball along with the following.

Lemma 1: Let $\|\cdot\|$ be any norm on \mathbb{R}^n . Then it is continuous with respect to $\|\cdot\|_{\infty}$.

Proof. Let $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{R}^n and let $M = \max_{i=1}^n ||e_i||$. Applying the triangle inequality and Theorem 2.11(a) we find that for all $x, y \in \mathbb{R}^n$

$$||x|| - ||y||| \le ||x - y||$$

= $\left| \left| \sum_{i=1}^{n} (x_i - y_i) e_i \right| \right|$
 $\le \max_{i=1}^{n} |x_i - y_i| M$
= $M ||x - y||_{\infty}.$

Thus, given $\epsilon > 0$, if $||x - y||_{\infty} < \epsilon/M$, then $|||x|| - ||y||| < \epsilon$, which shows that $||\cdot||$ is uniformly continuous with repsect to $||\cdot||_{\infty}$.

Proposition 3: If $\|\cdot\|$ is any norm on \mathbb{R}^n , it is equivalent to $\|\cdot\|_{\infty}$.

Proof. Let $S = \{x \in \mathbb{R}^n : ||x||_{\infty} = 1\}$. Then *S* is a closed subset of the closed unit ball and is hence compact. Since $|| \cdot ||$ is a continuous function, and since *S* is compact, there exist x_- and x_+ in *S* such that $||x_-|| \le ||x|| \le ||x_+||$ for all $x \in S$. Let $m = ||x_-||$ and let $M = ||x_+||$, and observe that m > 0 since $0 \notin S$. Given any $x \in \mathbb{R}^n$ with $x \ne 0$, it follows that

$$m \le \left| \left| \frac{x}{||x||_{\infty}} \right| \right| \le M$$

and hence

$$m||x||_{\infty} \le ||x|| \le M||x||_{\infty}.$$

This same inequality holds trivally if x = 0 as well.

Recall the following facts about equivalent norms proved in class:

1. If a sequence converges with respect to one of the norms, it converges to the same limit with respect to the other norm.

- 2. If a sequence is Cauchy with respect to one norm, then it is with respect to the other norm.
- 3. If a space is complete with respect to one norm, then it is complete respect to the other norm.

With these facts in hand, we obtain the following two results.

Proposition 4: Given a norm $\|\cdot\|$ on \mathbb{R}^n , the closed unit ball $B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ is compact (with respect to $\|\cdot\|$).

Proof. Suppose $\{x_n\}_n$ is a sequence in \mathbb{R}^n with $||x_n|| \le 1$ for each *n*. By equivalence of norms, there exists R > 0 such that $||x||_{\infty} \le R||x||$ for all $x \in \mathbb{R}^n$. Since the $|| \cdot ||_{\infty}$ ball of radius *R* is compact, the sequence $\{x_n\}_n$ admits a subsequence converging to some *x*. By equivalence of norms, the sequence also converges with respect to $|| \cdot ||$. Since $||x_n|| \le 1$ for each *n*, the continuity of the norm implies $||x|| \le 1$ as well.

Proposition 5: The space \mathbb{R}^n is complete with respect to any norm.

Proof. The space \mathbb{R}^n is complete with respect to $\|\cdot\|_{\infty}$, and any norm on \mathbb{R}^n is equivalent to $\|\cdot\|_{\infty}$.

We now turn to an arbitrary finite-dimensional real vector space X and we pick, once and for all, a basis $E_1, \ldots E_n$ for it.

Exercise 4: Let $\|\cdot\|$ be a norm on *X*. Given $p \in \mathbb{R}^n$, $p = (p(1), \dots, p(n))$ define

$$||p||' = ||p(1)E_1 + \cdots p(n)E_n||.$$

Show that $|| \cdot ||'$ is a norm on \mathbb{R}^n . You will need to use the fact that the vectors E_1, \ldots, E_n are linearly independent to show that if ||p||' = 0 then p = 0.

The equivalence of norms on X is now a simple corollary of the equivalence of norms on \mathbb{R}^n .

Proposition 6: Any two norms on a finite-dimensional vector space over \mathbb{R} are equivalent.

Proof. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on X and let $\|\cdot\|'_1$ and $\|\cdot\|'_2$ be the associated norms on \mathbb{R}^n via the construction of Exercise 4. There exist constants m and M such that

$$m||p||_1' \le ||p||_2' \le M||p||_1'$$

for all $p \in \mathbb{R}^n$. Given $x \in X$ we can write $x = x(1)E_1 + \cdots + x(n)E_n$ for certain coefficients x(j). Setting $p = (x_1, \dots, x(k))$ we see that $||p||'_1 = ||x||_1$ and $||p||'_2 = ||x||_2$. Thus

$$m||x||_1 \le ||x||_2 \le M||x||_1$$

Proposition 7: The closed unit ball with respect to any norm on a finite-dimensional vector space is compact.

Proof. Let $\{x_j\}$ be a sequence in X with $||x_j|| \le 1$ for each j, and write $x_j = x_j(1)E_1 + \cdots + x_j(n)E_n$. Defining $p_j \in \mathbb{R}^n$ by $p_j = (x_j(1), \ldots, x_j(n))$ we find $||p_j||' \le 1$, where $|| \cdot ||'$ is the norm on \mathbb{R}^n via the construction of Exercise 4. Thus $p_{j_k} \to p = (p(1), \ldots, p(n))$ for some subsequence and some limit p. Letting $x = p(1)E_1 + \cdots + p(n)E_n$ and unwinding definitions we find $x_{j_k} \to x$ as well. By continuity of the norm, $||x|| \le 1$ and we are done.

Exercise 5: Follow the strategy of Lemma 2 to show that any finite-dimensional normed space is complete.

For vector spaces over \mathbb{C} , we use the observation that any vector space over \mathbb{C} is simultaneously a vector space over \mathbb{R} , where scalar multiplication is defined the same way, but we only permit multiplication by real numbers.

Exercise 6: If *X* is a complex vector space with norm $\|\cdot\|$, show that $\|\cdot\|$ remains a norm when thinking of *X* as a vector space over \mathbb{R} .

Exercise 7: If *X* is a finite-dimensional complex vector space of dimension *n*, then it is a finite-dimensional real vector space of dimension 2n. Hint: If x_1, \ldots, x_n form a basis for *X* over \mathbb{C} , show x_1, \ldots, x_n together with ix_1, \ldots, ix_n form a basis for *X* over \mathbb{R} .

Exercise 8: With the previous observations in hand, establish the following (with little labor).

- 1. Any two norms on a finite-dimensional complex vector space are equivalent.
- 2. The closed unit ball in a finite-dimensional complex vector space is compact.
- 3. A finite-dimensional normed complex vector space is complete.