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In this document we establish the following facts about Rn:

1. Any two norms are equivalent.

2. The closed unit ball with respect to any norm is compact.

3. It is complete, with respect to any norm.

We then show that these same facts are true for any finite-dimensional vector space over R
or C.

For Rn, it will be convenient to work with the infinity norm,

∣∣x∣∣∞ =maxni=1 ∣xi ∣.

We first establish facts 1 and 2 for ∣∣ ⋅ ∣∣∞.

Lemma 1: The ∣∣ ⋅ ∣∣∞ closed unit ball {x ∈ Rn ∶ ∣∣x∣∣∞ ≤ 1} in Rn is compact with respect to
∣∣ ⋅ ∣∣∞.

Proof. Let {x j} j be a sequence inRn with ∣∣x j∣∣∞ ≤ 1 for each j and let uswrite x j = (x j(1), . . . , x j(n)).
Observe that each ∣x j(1)∣ ≤ 1 and hence there is a subsequence {x jk}k that converges to some
x(1) ∈ R with ∣x(1)∣ ≤ 1 also. Applying this argument to {x jk}k we find a sub-subsequence
with x jkℓ

(2) → x(2) for some x(2) with ∣x(2)∣ ≤ 1. Further repeating this argument we can
extract a final subsequence, call it {yk}, where for each j = 1, . . . , n, yk( j) → x( j) for some
x( j) with ∣x( j)∣ ≤ 1.

Setting x = (x(1), . . . , x(n)), it is clear that ∣∣x∣∣∞ ≤ 1. We claim that yk → x with respect to
∣∣ ⋅ ∣∣∞. Indeed, let є > 0. For each j pick K j such that if k ≥ K j, then

∣yk( j) − x( j)∣ < є.

Then if k ≥ K =max(K1, . . . ,Kn) then

∣∣yk − x∣∣∞ =maxnj=1 ∣yk( j) − x( j)∣ < є.

There is nothing special about unit balls compared to balls of an arbitrary radius:

Exercise 1: Use the previous result to show that for any R ≥ 0, BR = {x ∈ Rn ∶ ∣∣x∣∣ ≤ R} is
compact.

The following three exercises are straightforward applications of the definitions for metric
spaces.

Exercise 2: Show that a Cauchy sequence in a metric space is bounded.

Exercise 3: Show that a Cauchy sequence in a metric space with a convergent subsequence
actually converges.
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Lemma 2: The space Rn is complete with respect to ∣∣ ⋅ ∣∣∞.

Proof. Let {xn} be Cauchy with respect to ∣∣ ⋅ ∣∣∞. Then the sequence is bounded and there
is some R such that ∣∣xn∣∣∞ ≤ R for all n. The closed ball of radius R is compact, and thus the
sequence admits a subsequence converging to some x with ∣∣x∣∣∞ ≤ R. But Cauchy sequences
with convergent subsequences converge and thus xn → x.

We now show that any norm on Rn is equivalent to ∣∣ ⋅ ∣∣∞. This establishes fact 1, since
equivalence of norms is transitive. The key ingredients of the argument are the compactness
of the ∣∣ ⋅ ∣∣∞ unit ball along with the following.

Lemma 1: Let ∣∣ ⋅ ∣∣ be any norm on Rn. Then it is continuous with respect to ∣∣ ⋅ ∣∣∞.

Proof. Let {ei}ni=1 be the standard basis ofRn and letM =maxni=1 ∣∣ei ∣∣. Applying the triangle
inequality andTheorem 2.11(a) we find that for all x , y ∈ Rn

∣ ∣∣x∣∣ − ∣∣y∣∣ ∣ ≤ ∣∣x − y∣∣

= ∣∣
n

∑
i=1
(xi − yi)ei∣∣

≤ nmax
i=1
∣xi − yi ∣M

= M∣∣x − y∣∣∞.

Thus, given є > 0, if ∣∣x − y∣∣∞ < є/M, then ∣∣∣x∣∣ − ∣∣y∣∣∣ < є, which shows that ∣∣ ⋅ ∣∣ is uniformly
continuous with repsect to ∣∣ ⋅ ∣∣∞.

Proposition 3: If ∣∣ ⋅ ∣∣ is any norm on Rn, it is equivalent to ∣∣ ⋅ ∣∣∞.

Proof. Let S = {x ∈ Rn ∶ ∣∣x∣∣∞ = 1}. Then S is a closed subset of the closed unit ball and is
hence compact. Since ∣∣ ⋅ ∣∣ is a continuous function, and since S is compact, there exist x−
and x+ in S such that ∣∣x−∣∣ ≤ ∣∣x∣∣ ≤ ∣∣x+∣∣ for all x ∈ S. Let m = ∣∣x−∣∣ and let M = ∣∣x+∣∣, and
observe that m > 0 since 0 /∈ S. Given any x ∈ Rn with x ≠ 0, it follows that

m ≤ ∣∣ x
∣∣x∣∣∞

∣∣ ≤ M

and hence
m∣∣x∣∣∞ ≤ ∣∣x∣∣ ≤ M∣∣x∣∣∞.

This same inequality holds trivally if x = 0 as well.

Recall the following facts about equivalent norms proved in class:

1. If a sequence converges with respect to one of the norms, it converges to the same
limit with respect to the other norm.
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2. If a sequence is Cauchy with respect to one norm, then it is with respect to the other
norm.

3. If a space is complete with respect to one norm, then it is complete respect to the other
norm.

With these facts in hand, we obtain the following two results.

Proposition 4: Given a norm ∣∣ ⋅ ∣∣ on Rn, the closed unit ball B = {x ∈ Rn ∶ ∣∣x∣∣ ≤ 1} is
compact (with respect to ∣∣ ⋅ ∣∣).

Proof. Suppose {xn}n is a sequence inRn with ∣∣xn∣∣ ≤ 1 for each n. By equivalence of norms,
there exists R > 0 such that ∣∣x∣∣∞ ≤ R∣∣x∣∣ for all x ∈ Rn. Since the ∣∣ ⋅ ∣∣∞ ball of radius R is
compact, the sequence {xn}n admits a subsequence converging to some x. By equivalence
of norms, the sequence also converges with respect to ∣∣ ⋅ ∣∣. Since ∣∣xn∣∣ ≤ 1 for each n, the
continuity of the norm implies ∣∣x∣∣ ≤ 1 as well.

Proposition 5: The space Rn is complete with respect to any norm.

Proof. The space Rn is complete with respect to ∣∣ ⋅ ∣∣∞, and any norm on Rn is equivalent to
∣∣ ⋅ ∣∣∞.

We now turn to an arbitrary finite-dimensional real vector space X and we pick, once and
for all, a basis E1, . . . En for it.

Exercise 4: Let ∣∣ ⋅ ∣∣ be a norm on X. Given p ∈ Rn, p = (p(1), . . . , p(n)) define

∣∣p∣∣′ = ∣∣p(1)E1 +⋯p(n)En∣∣.

Show that ∣∣ ⋅ ∣∣′ is a norm on Rn. You will need to use the fact that the vectors E1, . . . , En are
linearly independent to show that if ∣∣p∣∣′ = 0 then p = 0.

The equivalence of norms on X is now a simple corollary of the equivalence of norms onRn.

Proposition 6: Any two norms on a finite-dimensional vector space overR are equivalent.

Proof. Let ∣∣ ⋅ ∣∣1 and ∣∣ ⋅ ∣∣2 be two norms on X and let ∣∣ ⋅ ∣∣′1 and ∣∣ ⋅ ∣∣′2 be the associated norms
on Rn via the construction of Exercise 4. There exist constants m and M such that

m∣∣p∣∣′1 ≤ ∣∣p∣∣′2 ≤ M∣∣p∣∣′1

for all p ∈ Rn. Given x ∈ X we can write x = x(1)E1 +⋯x(n)En for certain coefficients x( j).
Setting p = (x(1), . . . , x(k)) we see that ∣∣p∣∣′1 = ∣∣x∣∣1 and ∣∣p∣∣′2 = ∣∣x∣∣2. Thus

m∣∣x∣∣1 ≤ ∣∣x∣∣2 ≤ M∣∣x∣∣1
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Proposition7: Theclosed unit ball with respect to anynormon afinite-dimensional vector
space is compact.

Proof. Let {x j} be a sequence in X with ∣∣x j∣∣ ≤ 1 for each j, and write x j = x j(1)E1 + ⋯ +
x j(n)En. Defining p j ∈ Rn by p j = (x j(1), . . . , x j(n)) we find ∣∣p j∣∣′ ≤ 1, where ∣∣ ⋅ ∣∣′ is the
norm on Rn via the construction of Exercise 4. Thus p jk → p = (p(1), . . . , p(n)) for some
subsequence and some limit p. Letting x = p(1)E1 +⋯+ p(n)En and unwinding definitions
we find x jk → x as well. By continuity of the norm, ∣∣x∣∣ ≤ 1 and we are done.

Exercise 5: Follow the strategy of Lemma 2 to show that any finite-dimensional normed
space is complete.

For vector spaces over C, we use the observation that any vector space over C is simultane-
ously a vector space overR, where scalar multiplication is defined the same way, but we only
permit multiplication by real numbers.

Exercise 6: If X is a complex vector space with norm ∣∣ ⋅ ∣∣, show that ∣∣ ⋅ ∣∣ remains a norm
when thinking of X as a vector space over R.

Exercise 7: If X is a finite-dimensional complex vector space of dimension n, then it is a
finite-dimensional real vector space of dimension 2n. Hint: If x1, . . . , xn form a basis for X
over C, show x1, . . . , xn together with ix1, . . . , ixn form a basis for X over R.

Exercise 8: With the previous observations in hand, establish the following (with little la-
bor).

1. Any two norms on a finite-dimensional complex vector space are equivalent.

2. The closed unit ball in a finite-dimensional complex vector space is compact.

3. A finite-dimensional normed complex vector space is complete.
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