Recall that $\hat{L}^1[a, b]$ is the set of equivalence classes of Riemannian integrable functions on [a, b], where $f \sim g$ if

$$\int_a^b |f-g|=0.$$

1. Show how to impose a suitable vector space structure on $\hat{L}^1[a, b]$. For the purposes of this exercise you must define

```
[f] + [g]
```

and

 $\alpha[f]$

and show that this definition is well-defined. Then, rather than showing that all the vector space axioms hold, just show these two:

- 1. There exists an element $Z \in \hat{L}^1[a, b]$ with Z + F = F for all $F \in L^1[a, b]$.
- 2. For all $\alpha \in \mathbb{R}$ and $F, G \in L^1[a, b], \alpha(F + G) = \alpha F + \alpha G$.
- **2.** Show that $\hat{L}^1[a, b]$

$$||F|| = \int_{a}^{b} f$$

where *f* is any function with [f] = F is a well-defined norm on $\hat{L}^1[a, b]$.

3. Show that $\hat{L}^1[a, b]$ is not complete. Here's one approach on [0, 1]. Consider the functions

$$f_n(x) = \begin{cases} x^{-1/2} : x \ge 1/n \\ 0 : \text{otherwise.} \end{cases}$$

Show that the sequence $[f_n]$ is Cauchy in $\hat{L}^1[a, b]$. And then show that if f is a Rieman integrable function that $f_n \neq f$. Hint: if f is Riemann integrable, there is a number M with $|f| \leq M$. Now show that $||[f] - [f_n]|| \geq 1/(2M)$ if n is sufficiently large.

4. Using the rules presented in class for L¹[a, b] show that if f is a representative of both F and G in L¹[a, b] then F = G.

5. TBA