- **1.** R & Y 3.21
- **2.** R & Y 3.22
- 3. R & Y 3.23
- **4.** R & Y 4.3
- **5.** Consider the map $I : C[0,1] \rightarrow C[0,1]$ given by

$$(I(f))(x) = \int_0^x f(s) \, ds.$$

Find a sequence of functions f_n such that $||f_n||_{\infty} = 1$ and such that $||If_n||_{\infty} \to 0$. Then tell me what this has to do with Example 4.10.

- **6.** For each pair *p* and *q* with $1 \le p, q \le \infty$ determine whether the map $z \mapsto z$ from (Z, ℓ^p) to (Z, ℓ^q) is continuous.
- 7. Consider *Z* with the ℓ^2 norm. Fix $w \in \ell^p$ for some $1 \le p \le \infty$ and define

$$T(z)=\sum_{k=1}^{\infty}w_kz_k.$$

Determine the values of p such that T is necessarily continuous.

8. [Extra Credit] For each pair p and q with $1 \le p, q \le \infty$ determine whether the map $f \mapsto f$ from $(C[0,1], L^p)$ to $(C[0,1], L^q)$ is continuous.