- **1.** Prove that ℓ^{∞} is complete.
- **2.** Consider the norms $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$, on \mathbb{R}^n . Since all norms on \mathbb{R}^2 are equivalent, there are constants *m* and *M* such that

$$m||x||_1 \le ||x||_2 \le M||x||_1$$

for all $x \in \mathbb{R}^2$. Find, with proof, the best such constants and make a diagram that illustrates this fact.

Now repeat this exercise for the remaining two pairs of norms (i.e. the pair $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ and the pair $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$).

- **3.** Show that if *X* is a Banach space and $S \subseteq X$ is a closed subspace, then *S* is complete (and hence a Banach space).
- **4.** R & Y 2.10
- 5. R & Y 2.11(b)
- **6.** R & Y 2.12
- **7.** R & Y 2.13
- **8.** R & Y 2.14