1. R \& Y 2.1

They mean here, show that the putative norm in Example 2.8 really is a norm.
2. R \& Y 2.2

For part b), I know that we have not discussed the Lebesgue space $L^{1}[0,1]$. Don't fret. Up to a white lie, $L^{1}[0,1]$ consists of functions mapping $[0,1]$ to \mathbb{R}, and includes the continuous functions. For a continous (and hence Riemann integrable function) f,

$$
\|f\|_{L^{1}[0,1]}=\int_{0}^{1}|f| .
$$

That's enough background to solve the problem.
3. R \& Y 2.3
4. R \& Y 2.4
5. R \& Y 2.5
6. Let X be an normed vector space. Show that a sequence $\left\{x_{n}\right\}$ in X converges to x if and only if

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0
$$

7. Suppose f and g are continuous functions on $[a, b]$. Show that

$$
\int_{a}^{b} f g \leq\left[\int_{a}^{b} f^{2}\right]^{\frac{1}{2}}\left[\int_{a}^{b} g^{2}\right]^{\frac{1}{2}}
$$

Then show that if f and g are continuous on $[a, b]$,

$$
\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}
$$

where

$$
\|f\|_{2}=\left[\int_{a}^{b} f^{2}\right]^{\frac{1}{2}}
$$

8. R \& Y 2.6
